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Abstract 
In the current paper, we develop an approach to early science pedagogy that is based on 
insights about how complex adaptive systems function. Complexity approaches have an 
important advantage over traditional information-processing approaches: They anticipate the 
proverbial ‘mind with a mind of its own’ without having to postulate exclusively mental 
constructs. They also offer insights about key determinants of learning and effective pedagogy, 
again without postulating exclusively mental constructs. For complex adaptive systems, 
learning depends on the presence of sufficiently salient novelty (i.e., variability), and it 
depends on the presence of sufficiently salient repetitions or ordered patterns (i.e., stability). 
Science learning, therefore, requires science-relevant novelty and science-relevant patterns of 
order. Equipped with these insights, we address two challenges of early science pedagogy: (1) 
how to combine children’s self-guided explorations with teachers’ strategic interventions, and 
(2) how to minimize the chances of generating misconceptions about science. The answer lies 
in creating a learning context that maximizes science-relevant variability and science-relevant 
stability. If both aspects are abundantly available, a child’s self-guided explorations are 
effective. Conversely, if either aspect is missing, efforts must be made to add them strategically 
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to a child’s experience. Adding science-relevant stability is particularly challenging, yet crucial 
to avoid science misconceptions. 

Keywords Complex adaptive systems . Science taxonomy. Preschool science learning . Early 
childhood education 

“When data of any sort are placed in storage, they are filed, and information is found by 
tracing it down. The human mind does not work that way. With one item in its grasp, it 
snaps instantly to the next that is suggested by the association of thoughts, in accordance 
with some intricate web of trails.” 
—Bush 1945 

Recent decades have seen a strong push for science learning at the preschool level (Kloos et al. 
2012; National Research Council 2001). Yet, challenges remain. For example, details are still 
unclear about how to combine children’s self-guided explorations with a teacher’s strategic  
interventions (e.g., Ashiabi 2007; Fullan 1994; Golbeck  2001; Hadley  2002; Kagan  1990; 
Lazonder and Harmsen 2016; Mayer  2004). Similarly, there are still questions about how to 
avoid misconceptions about science phenomena (cf. Carey 2000; Shtulman and Valcarcel 
2012; Vosniadou  2007). In the current paper, we offer solutions to these challenges, using 
insights about complex adaptive systems. 

Complex adaptive systems consist of elements that are affected by outside forces, as 
well as by each other (Holland 2006). One familiar example is the system that produces 
the weather: Molecules of water and air are affected by the sun’s heat, as well as by each 
other (e.g., when air is caught in a tornado). Other examples include cells, organs, 
bodies, and animal groups (e.g., ant colonies, bird flocks, schools of fish, families). 
Complex adaptive systems are also found in social organizations, the world wide web, 
and the economy (Caldarelli and Catanzaro 2012; Davis and Sumara 2006; Davis et al. 
2009; Gargiulo and Benassi 2000; Hilpert and Marchand 2018; Mendes and Dorogovtsev 
2003; Whitchurch and Constantine 2009). Even the mind operates like a complex 
adaptive system, whether the emphasis is on perception, problem-solving, or reasoning 
(Chow et al. 2011; Clarke and Collins 2007; Colunga and Smith 2008; Fenwick  2003, 
2008; Jacobson and Wilensky 2006; Kello et al. 2007; Mason  2008; Sporns and Zwi 
2004). In each case, elements organize themselves into structures that persist over time, 
all without a fixed blueprint or an external controller. 

In the current paper, we build upon these ideas to derive explicit recommendations for 
early science education (see also Barab et al. 1999; Davis and Simmt 2003). Our paper is 
organized as follows. First, we describe what a complexity approach can offer, vis-à-vis 
the traditional information-processing approach to children’s cognition. We then develop 
a complexity-based learning theory, derived from the working of an iconic complex 
adaptive system: the ecosystem. Next, we apply the complexity theory of learning to the 
working of the mind. In extending these insights to children’s science learning, we offer 
a taxonomy of science content that considers complexity-based key determinants of 
learning. Finally, we use the proposed taxonomy of science content to address current 
challenges in early science education. 
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What Do Complexity Accounts Offer That Traditional Accounts Cannot? 

The mind’s ability to make sense of its surroundings is typically addressed with information-
processing accounts (e.g., Miller 1956). These accounts attribute mental activities to an 
underlying flow-chart architecture of processes (e.g., Anderson 1996, 2015; Weisberg and  
Reeves 2013). The input to such a flow chart is the child’s surrounding, and the output is the 
meaning that the mind computes (e.g., Fodor 1981; Gazzaniga 2004). In this view, identifiable 
units guide the processing of information from input to output. For example, attention is 
thought to stem from a unit responsible for executive function; memory is said to involve the 
mind’s storage system; and reasoning is said to stem from the unit that manipulates symbols 
(e.g., Halford et al. 1998; Kurby  and Zacks  2008). These accounts are hugely popular, so much 
so that information-processing terms have become part of everyday language (e.g., ‘selective 
attention, ‘long-term memory’, ‘representation’). 

Despite their popularity, there are concerns about the underlying assumptions of 
information-processing accounts (e.g., Barsalou 2008; Lakoff  2008; Van Orden et al. 2003). 
For example, information-processing accounts imply a reflexive and scripted mind: Informa-
tion impinges on the senses and triggers the formation of knowledge in a computationally 
fixed way (cf. Ohlsson 2011). In reality, numerous examples suggest the opposite to be true. 
The mind is actively filtering and selecting—as if having a mind of its own (Carey 2014; Fine  
2008; Flavell et al. 1998; Piaget and Inhelder 1969). Everyday observations of children 
illustrate this point: Children can oscillate from being highly focused to absent-minded, all 
without obvious changes in the surrounding. And children will sometimes remember seem-
ingly irrelevant details, while forgetting what appears to be exceedingly obvious. They might 
even make up new content and reject experiences that do not fit with their expectations 
(Kelemen 1999; Kuhn  1989; Shtulman 2017; Simons and Keil 1995). 

In order to accommodate the apparent willfulness of mental activity, information-
processing accounts must put forth additional theoretical constructs, on top of the assumed 
architecture. For example, to explain unexpected behavior, postulated processes include 
interference, inhibition, and implicit memory (e.g., Diamond 1985, 1990; Posner  and  
DiGirolamo 1998). And, to explain unexpected learning or forgetting effects, individual 
differences have been invoked, for example in cognitive readiness, working-memory capacity, 
accessibility, or developmental stage (Jonassen and Grabowski 2012; Ormrod  2011). Such 
theoretical maneuvering has allowed information-processing accounts to remain relevant in 
cognition. However, the framework has not succeeded in univocally addressing questions 
about learning. 

In contrast to information-processing accounts, complexity approaches can capture the 
aliveness of systems without needing additional theoretical constructs (e.g., Holland 2000; 
Iberall and McCulloch 1969; Kauffmann  1993). Whether the new structure is a cold front, an 
ant hill, a pattern of brain activation, or social interactions, no domain-specific machinery is 
needed to explain why a behavior persists. Instead, the only requirement is a large number of 
elements, connected to the outside and to each other, and placed under certain thermodynamic 
constraints (Deacon 2011; Jacobson  et  al.  2016; Michaelian 2005). More specifically, the 
general laws of thermodynamics push for elements to settle into organizational structures that 
speed up the process of increasing randomness (Gross and Blasius 2008; Nicolis and Prigogine 
1989). The mind’s working follows the same principle: Meaning emerges from pressures to 
abide by the laws of thermodynamics (Swenson 2000; Turvey and Carello 2012). 
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In sum, while both complexity and information-processing accounts can explain stable 
patterns of human behavior, only complexity accounts anticipate the apparent willfulness of 
mental activity. They do so by capitalizing on the general principles of dissipating thermody-
namic gradients. These principles, when applied to interacting elements of a medium, push for 
structures to emerge and persist against perturbations, as if having a mind of their own. Thus, 
what looks like a willful agent is instead an emergent pattern resulting from the universal 
tendency to maximize randomness. In the next section, we describe selected features of 
complex adaptive systems to derive a general theory of learning. 

How Do Complex Adaptive Systems Learn? 

So far, we have given a justification for why complexity accounts provide a useful framework 
to capture mental activity. The next step is to address the question of learning. Here, we turn to 
ecosystems, a type of complex adaptive system that has been linked to the working of the mind 
before (Castillo et al. 2015; La Cerra and Bingham 2002; Ulanowicz 2009, 2012; Weber  
2010). Like all complex adaptive systems, ecosystems consist of elements that are affected by 
outside forces and by each other: Species are affected by the surrounding, and they feed on 
each other. Furthermore, ecosystems are subject to the same thermodynamic laws that push for 
the self-organization seen in all complex adaptive systems: The exchange of calories contrib-
utes to the overall dissipation of calories, increasing randomness. However, ecosystems differ 
from the generic complex adaptive system in their maturity. Over centuries of calorie ex-
change, species have changed each other in a lasting way. This makes it possible to identify 
key determinants of learning more readily than in a more transient complex adaptive system. 

Figure 1 shows an example ecosystem: a schematic of the real-life Cone Spring ecosystem 
(Allesina and Bondavalli 2003). The elements of this system are bacteria, detritivores (e.g., 
worms), carnivores (e.g., birds), and organic material. Importantly, each element of the 
ecosystem is a complex adaptive system in itself (e.g., species are composed of animals 

Fig. 1 Schematic of the Cone Spring ecosystem. The wide arrows reflect the network’s sensitivity, and the line 
arrows reflect the cohesion between species 



~ Springer 

Educational Psychology Review 

organized into families, herds, swarms, etc.). Even a single animal is not a fixed entity: Though 
seemingly distinct from other animals and entities around it, an animal is actually composed of 
many smaller systems that are in constant exchange with the outside and each other (cf. 
Barabási and Albert 1999). 

The two types of arrows in Fig. 1 reflect the ways in which an ecosystem can learn (i.e., 
adapt). The wide arrows show the sensitivity of the elements. Sensitivity pertains to the degree 
to which elements can change in response to something new or different (e.g., a new sound, a 
different temperature, a shift in chemical concentration, etc.). Thus, sensitivity captures the 
elements’ ability  to change  in response to outside  variability (i.e., a change that is observable 
against a static background). Species differ in what they are sensitive to. For example, whereas 
most birds can easily detect changes in sounds, worms may be less sensitive to acoustic 
variability. Regardless of a species’ particular sensitivities, the same principle applies: Larger 
variability will affect elements the most. 

The narrow line arrows in Fig. 1 show the cohesion among elements, also referred to as 
dynamic coordination, coupling, or synchronization (Kelso et al. 2013; Pantaleone 2002; 
Strogatz 2004). Cohesion pertains to the degree to which elements can change each other. In 
the case of ecosystems, cohesion is manifested in the exchange of calories: Bacteria eat organic 
material, worms eat bacteria, birds eat worms, and so on. The more that birds prey on worms, 
the more their hunting skills and digestive systems align with what worms have to offer. This, 
in turn, increases the tendency for birds to prey on worms in the future, which gives the system 
its persistence. Thus, cohesion operates in a circular way: Birds can only prey on worms if 
their hunting skills and digestive systems align with the worms’ characteristics. Once initiated, 
this alignment becomes amplified over time. 

How does the outside affect cohesion? There is no external controller strategically arrang-
ing birds and worms in such a way that they can affect each other. Instead, the connection 
among species stems from an outside order that has become amplified over time. Birds can 
only prey on worms if they encounter worms regularly. This, in turn, depends on birds and 
worms having adapted to the surrounding that repeats itself over time. Put differently, cohesion 
is a function of outside stability: the patterns of order that repeat themselves against a noisy 
background. Once coordination emerges in response to predictable outside patterns, these 
patterns can become further amplified, changing the animals to the point that they no longer 
reflect the patterns that gave rise to the initial coordination. 

In sum, ecosystems provide important insights about how complex adaptive systems 
change over time. It comes down to the two characteristics of sensitivity and cohesion, which 
illustrates the key outside features that affect complex adaptive systems: outside variability 
(e.g., a drastic change in temperature during a forest fire) and outside stability (e.g., a 
predictable repetition of the four seasons). Variability affects elements via their sensitivity, 
and stability affects the elements via their cohesion. In the next section, we apply these insights 
to the working of the mind. 

How Does the Mental Complex Adaptive System Work? 

Picture a sunny butterfly garden, complete with plants and insects, as well as pathways, soil, 
and loose parts. When visiting the butterfly garden, a child’s mental activity will turn the busy 
surrounding of colors, shapes, and smells into lasting meaning. It will also allow the child to 
ignore and forget some aspects of the surrounding, namely to fulfill the thermodynamic law of 
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increasing randomness. Central to these activities are the same aspects that characterize all 
complex adaptive systems: Mental activity involves a large number of elements that are 
characterized by sensitivity and cohesion, changed by outside variability and outside stability.1 

Here, we present the details of these aspects, namely to derive the ideal pedagogy for science 
learning (see Table 1 for a summary of the working of complex adaptive systems, applied to 
ecosystems and the mind). 

Elements In information-processing terms, the units of mental activity are known as “sensa-
tions,” “percepts,” “representations,” “symbols,” or the like. To avoid the theoretical overlap, we 
will use the more general term of impressions to define the elements of the mind’s complex 
adaptive system. For a child watching a butterfly, impressions could pertain to the butterfly sitting 
perched upon a leaf, the butterfly flapping its wings, or the butterfly landing on a flower. 
Importantly, impressions are not mere snapshots of an experience. Rather, they are themselves 
networks of elements, the same way a species consists of individual creatures embedded within a 
system. The nested hierarchy of complex adaptive systems that makes up an impression allows 
the impression to last a moment longer than the experience that gave rise to it. A child can close 
her eyes momentarily and will still be able to picture the butterfly sitting perched upon a leaf. 

Sensitivity The same way species in ecosystems are affected by outside changes, the impres-
sions of a mental network are affected by novel events. It is the child’s sensitivity to a new 
shape, a new sound, or a new behavior. Thus, sensitivity is the way by which impressions are 
enriched by something novel, different, or unexpected. Note that information-processing 
approaches generally portray mental elements, once formed, as being cut off from the outside. 
There are, however, theoretical precursors to the idea that impressions remain continuously 
connected to the outside. Piaget, for example, coined the term ‘assimilation’ to describe how 
schemata, after having been formed, nevertheless get changed by new experiences (Piaget 
1954). A similar notion is echoed in situated-cognition approaches: the idea that cognition, 
rather than being the product of symbol manipulation encapsulated within information-
processing machinery, is continuously affected by the outside context (e.g., Gibbs 2005). 
Table 2 provides more details on how the complexity approach compares with other devel-
opmental theories. 

Cohesion In addition to being affected by outside change, impressions are affected by each 
other. This is because impressions coordinate with each other, analogous to the coordination 
between species. Cohesion between two impressions stems from the match between them (cf. 
Bush 1945). This match could come from two impressions having something in common—for 
example, when a child looks at the same butterfly in two different positions (the match being in 
the overall shape of the butterfly’s wings in relation to other parts of its body). Or it could come 
from two impressions being associated with each other—for example, when a teacher points 
out a butterfly and tells a story about it (the match being in the idea of the butterfly that 
connects the different impressions of the story). It could even come from correlational or 
causal links, such as the link between butterflies and summer, or the link between butterflies 

1 The idea of elements being changed is broadly conceived to include not only genuine change but also the idea 
of elements being created. Incidentally, education typically focuses the process of creating something (e.g., 
knowledge), while ecology typically focuses on the process of change (e.g., adaptation of species). However, the 
distinction between creating and changing is likely to be artificial. In reality, elements of complex adaptive 
systems are neither fully new, nor fully old. 
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Table 1 Characteristics of complex adaptive systems, exemplified in ecosystems and the mind 

Characteristic of complex Applied to ecosystems Applied to mental activity 
adaptive systems 

They consist of elements that 
are themselves complex 
adaptive systems 

Elements are sensitive to 
outside variability 

The largest variability 
(against a static background) 
affects the system the most 

Elements are cohesively 
coupled to each other  

Cohesion reflects a match 
between elements 

Cohesion stems from 
outside stability 

The most obvious stability 
(against noisy background) 
affects the system the most 

Species are made up of 
interacting creatures that 
are complex adaptive 
systems in their own right 

Creatures are sensitive to 
changes in the surrounding 

Large changes are likely to 
affect the ecosystem the most 

Creatures feed off each other 

There is an alignment between 
predator and prey 

Alignment stems from an 
adaptation to what remains 
the same over time 

Creatures adapt to whatever they 
encounter most frequently 

Multiple impressions make 
up a mental network, each 
consisting of its own network 
of impressions 
Impressions are enriched by 

something new 
Obvious changes and differences 

affect mental networks the most 

Impressions couple with each 
other 

The basis for the coupling is a 
match between impressions 

Coupling stems from a common 
thread or repeating patterns 

Obvious common thread 
(against noisy background) 
is preferred 

and caterpillars. Importantly, the match that gave rise to the initial coordination of impressions 
will increase over time, the same way predators adapt to their prey over time. 

Table 2 Side-by-side comparison between complexity theory (CT) and other prominent theories 

Existing learning Main claims Alignment with CT Discrepancy with CT 
theory 

Situated-Cognition 
Theory (cf. 
Embodied 
Cognition; 
Embedded 
Cognition) 

Piaget’s Theory  of  
Developmental 
Stages 

Vygotsky’s Social-
Learning Theory 

Cognition, rather than 
being defined as a brain 
-based manipulation of 
symbols, is defined by 
actions in richly 
structured situations. 

Knowledge, rather than 
being transmitted 
directly, 
emerges as an adaptation 
to the child’s experiences 
and follows a stage-like 
development (from con 
crete to abstract). 

Learning is best when the 
task matches competence 
(zone of proximal 
development). Adults 
need to help find this 
balance to minimize the 
learner’s frustration or 
boredom. 

CT emphasizes the 
mind’s continuous  
connection to the 
outside and rejects the 
idea of computational 
processes and symbol 
manipulation. 

CT highlights emergence 
and anticipates 
differences in learning 
difficulty. Sensitivity 
and cohesion map onto 
the processes of 
assimilation and 
accommodation. 

CT rejects the idea that 
learning is a fully 
internal process that 
proceeds on predictable 
trajectory. It anticipates 
the role of social  
interactions to 
maximize 
learning. 

CT defines the connection 
to the outside more 
precisely (variability 
and stability) and 
specifies internal 
processes to the 
mind. 

CT goes beyond the 
concrete-abstract divide 
and captures learning 
difficulty systematical-
ly. 
It also explains how 
stage-like behavior can 
emerge from complex 
interactions. 

CT provides additional 
details about the 
circumstances in which 
an intervention from a 
knowledgeable adult is 
needed and how exactly 
the adult can support 
learning. 
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Note that information-processing approaches treat mental elements as fixed entities, to be 
stored in long-term memory like a book in a library. However, the idea that mental entities 
affect each other is again not entirely new. Piaget, for example, introduced the notion of 
‘accommodation’, the process by which an existing schema can change a newly acquired 
schema. More pointedly, Karmiloff-Smith described the process of ‘representational re-de-
scription,’ asserting that children’s ideas change retrospectively, in the direction of a common 
abstraction (Karmiloff-Smith 1992). Further expansions and mathematical grounding came 
from connectionist models, with complexity approaches adding to the theoretical foundation 
(e.g., Spencer et al. 2009). 

Outside Variability Outside variability pertains to changes against a static background— 
everything that is new or different in the surrounding. Examples include different modalities 
(e.g., sound vs. light), different features (e.g., color vs. texture), and differences in feature 
magnitude (e.g., short vs. tall). The more variability in a particular feature, the more those 
impressions get enriched. Indeed, preschool settings are often loaded with variability: Walls 
feature primary colors and sharply delineated shapes, new props feature never-before-seen 
functions, and teachers exaggerate their behavior to express their excitement or concern. The 
more obvious the outside variability (against a static background), the more likely it will be to 
enrich an impression. In contrast, if a change or difference is too small (e.g., subtle changes in 
a toy’s shading), it will remain unnoticed and be treated as background. 

Outside Stability Outside stability pertains to re-occurring patterns against a noisy 
background—regularities that repeat themselves from one experience to the next. Examples 
include the broad shapes of objects or living things, the consistent arrangement of objects, 
stable routines, and predictable sequences of events. Outside stability contributes to the match 
between impressions, which is needed for impressions to coordinate with each other. Thus, the 
more obvious the outside stability, the more likely it is that impressions will coordinate with 
each other. It is no surprise then that preschool settings are rich in stability. The teachers remain 
the same over a period of time, they arrange their classrooms in ways that are stable, and they 
often follow the same routines and rules from one day to the next. If a repeating pattern of 
order or a common thread across experiences is hidden, say because there is too much change 
in a child’s experience, individual impressions cannot synchronize on the basis of that thread. 
Instead, the hidden pattern of order becomes part of the background. 

The fact that sensitivity and cohesion are based on opposite aspects of the outside provides 
the mind with an effective decision-making tool about what is relevant and what is not (i.e., 
what to pay attention to, what to ignore, what to remember, and what to forget). Specifically, 
variability can only be attended to if it is more obvious than what remains stable. Otherwise, 
the stability would have priority, and the variability would be ignored as noise. Vice versa, 
stability can only be remembered if it is more obvious than what changes. Otherwise, the 
variability would have priority, and the stability would be ignored as static background. Thus, 
outside variability and outside stability are weighed against one another as the mind seeks to 
make sense of the surrounding. 

In sum, outside variability and stability are fundamental to an account of learning 
(Rączaszek-Leonardi 2016; Riley and Turvey 2002; Tumer and Brainard 2007). This is 
because both variability and stability affect the mental network, whether by enriching impres-
sions (via sensitivity) or by increasing the strength by which impressions are coupled to each 
other (via cohesion). Thus, for learning to happen, one must consider (1) the amount of 



~ Springer 

Educational Psychology Review 

variability in the surrounding (i.e., change, difference, novelty) and (2) the amount of stability 
in the surrounding (i.e., patterns of order, symmetry, common threads from one experience to 
the next). In the remaining two sections, we apply these insights to science learning and 
effective pedagogy. 

How Does Outside Variability and Stability Matter for Science Learning? 

Science content is typically defined to include two broad areas: science inquiry (i.e., the 
generation of scientific knowledge), and scientific truisms (i.e., science facts). Science inquiry 
ranges from making observations to testing predictions and drawing causal inferences. Science 
truisms, on the other hand, pertain to facts in domains such as life science (e.g., comparison of 
living things, growth of organisms), physical science (e.g., states of matter, energy), and earth/ 
space science (e.g., weather, day/night cycle, seasons). Although this traditional taxonomy is 
widespread (Kloos et al. 2018; Zimmerman  2000), it fails to consider how the mind learns (or 
fails to learn). In this section, we propose a new taxonomy of science content, one that builds 
upon the idea that variability and stability are the key determinants of learning. 

Central to the proposed taxonomy is the degree to which (1) obvious variability is relevant 
to science (vs. distracting and irrelevant), and (2) obvious stability is relevant to science (vs. 
distracting and irrelevant). To illustrate, consider again the butterfly garden. An example of 
science-relevant variability (i.e., SR variability) is the difference between animals and plants. 
Another example of SR variability, less salient perhaps, is the difference in butterfly wings 
between different types of butterflies. In contrast, an example of science-relevant stability (i.e., 
SR stability) is the broad shape of the butterfly wings, repeated across impressions. Another 
example of SR stability, difficult to detect spontaneously, but nevertheless present, is the 
predictable way in which plants turn sunlight into nutrition (i.e., photosynthesis). 

Combining SR variability and SR stability, we distinguish between three types of science 
content: (1) science content for which SR variability and SR stability is exceedingly obvious in 
a child’s typical surrounding, (2) science content for which only SR stability is obvious (while 
SR variability is hidden), and (3) science content for which only SR variability is obvious 
(while SR stability is hidden). For ease of description, we use nomenclature proposed by 
Rosch (1975, 1978) and distinguish between (1) basic-level science content, (2) sub-ordinate 
level science content, and (3) super-ordinate level science content.2 

Basic-Level Science Content Basic-level science content has obvious SR variability and 
obvious SR stability, both available abundantly to young children. The concept of a butterfly 
as an animal category is a good example of basic-level content. Regarding SR variability, 
butterflies differ starkly from other animals—more so than the irrelevant differences among 
individual butterflies (e.g., the difference in detailed wing shapes). And regarding SR stability, 
the features that are characteristic of butterflies (e.g., their broad shape) are stable from one 
moment to the next—more so than irrelevant characteristics of the butterflies’ position or 
behavior. Table 3 lists this and two more examples of basic-level content (states of matter and 

2 In order to explain why some words are learned much faster than others, Rosch (1975) focused on a word’s 
level of specificity. Basic-level concepts were said to be neither too specific nor too abstract. Sub-ordinate level 
concepts, on the other hand, were said to be more specific than basic-level categories; and super-ordinate level 
categories were said to be less specific (i.e., more abstract) than basic-level categories. The complexity view is in 
line with this taxonomy but adds detail to what is meant with specificity. 
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Table 3 Examples of basic-level science content 

Variability (novelty, difference) Stability (patterns, common thread) 

Animals (e.g., butterflies) 
Relevant Stark differences between Characteristic butterfly features 

butterflies and other (e.g., overall shape) are stable 
animals (e.g., shape, over time 
behavior) 

Irrelevant – – 

States of matter (e.g., ice) 
Relevant There are many differences Characteristic features of ice 

between ice and water (e.g., temperature) are stable 
(e.g., temperature, texture, from moment to moment 
behavior) 

Irrelevant – – 

Seasons (e.g., winter) 
Relevant There are many differences Characteristic winter features 

between winter and summer (e.g., leafless trees) are stable 
(e.g., temperature, precipitation) from moment to moment 

Irrelevant – – 

seasons). For each of these concepts, SR variability and SR stability are far more pronounced 
than irrelevant variability and stability. 

Sub-Ordinate Level Science Content For sub-ordinate level science content, naturally occur-
ring SR variability is absent or difficult to detect (vis-à-vis variability that is irrelevant to 
science). Consider, for example, the concept of Monarch butterflies. They differ from other 
butterflies in only small details (e.g., the color pattern of wings)—hidden from the many other 
features that vary in a butterfly garden. On the other hand, SR stability is obvious: The detailed 
color patterns of the Monarch wings are stable from one moment to the next, allowing 
impressions to couple on the basis of wing patterns (once the difference in wing pattern is 
detected). Table 4 lists other examples of sub-ordinate level science content. In each case, there 
are many irrelevant changes and differences that can distract the child (resulting in hidden SR 
variability). Once relevant aspects are discovered, they are available reliably over time 
(resulting in obvious SR stability). 

Super-Ordinate Level Science Content Finally, for super-ordinate level science content, 
naturally occurring SR stability is hidden, compared to stability that is irrelevant to the science 
content. This is content that gives rise to strikingly novel but rare events. One example is the 
concept of a butterfly’s life cycle: SR variability lies in the caterpillar turning into a cocoon, 
and the cocoon turning into a butterfly. Both of these transformations are clearly distinct and 
rather surprising, making for obvious SR variability. However, these transformations are rare, 
happening only once in an animal’s life. Many irrelevant events take place between one 
transformation and the next, making for a heavily interrupted common thread (i.e., hidden SR 
stability). Table 5 lists this and other examples of super-ordinate level science content. 

In sum, the complexity-based determinants of learning offer a taxonomy of science content 
that cuts across domains. Central to this taxonomy is the degree to which (1) the most obvious 
outside variability is science-relevant, and (2) the most obvious outside stability is science-
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Table 4 Examples of sub-ordinate level science content 

Variability (novelty, difference) Stability (patterns, common thread) 

Types of butterflies (e.g., Monarch butterfly) 
Relevant Minimal differences between Defining features of Monarch 

Monarch and Swallowtail butterflies are stable across time 
(e.g., wing colors) 

Irrelevant Stark differences between – 
butterflies and other animals 
(e.g., shape, behavior) 

Measurements of objects (e.g., mass) 
Relevant Difficult to isolate differences in mass Defining feature of mass 

(perceived heaviness) is stable 
over time 

Irrelevant Stark differences among objects – 
(e.g., color, shape, size, function) 

Measurement of weather (e.g., temperature) 
Relevant Difficult to isolate differences in Defining feature of temperature 

temperature (perceived warmth) is stable 
over time 

Irrelevant Stark differences in weather – 
(e.g., sky cover, precipitation) 

Table 5 Example super-ordinate level science content 

Variability (novelty, difference) Stability (patterns, common thread) 

Life cycle of butterflies 
Relevant Change of a cocoon into a Change of a cocoon into a 

butterfly is highly salient butterfly is rare; link between 
cocoon and butterfly (DNA) 
is hidden 

Irrelevant – Features characteristic of cocoons 
(vs. butterflies) are stable over 
time (e.g., shape) 

Mammals 
Relevant Giving birth to live young is Live birth is rare; characteristic 

highly salient features of mammals are hidden 
(e.g., uterus) 

Irrelevant – Many similarities between mammals 
and non-mammals (e.g., bats 
and birds fly). 

Measurements of materials (e.g., buoyancy) 
Relevant Objects that differ in buoyancy Informative contrast in sinking 

behave differently in water behavior is rare, and causal 
feature is hidden (e.g., density) 

Irrelevant – Many features remain stable over 
time (e.g., shape, color, size) 

Water cycle 
Relevant Transformation from one body Cycle of transformations is hidden 

of water to another is highly (from rain to river to clouds). 
salient 

Irrelevant – Bodies of water remain stable over time 
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relevant. Science content for which both of these requirements are met fits into the category of 
basic-level science content. Science content that lacks salient SR variability fits into the category 
of sub-ordinate level science content. And science content that lacks salient SR stability fits into 
the category of super-ordinate level science content. This taxonomy anticipates learning difficulty 
and thus allows for inferences about ideal pedagogy, as discussed in the next section. 

Which Early Science Pedagogy Is Best? 

Despite a strong push for early science education, the ideal pedagogy remains unclear. Some 
claim that preschoolers are innate scientists, capable of discovering scientific facts merely from 
exploring surroundings on their own (Cook et al. 2011; Gopnik  1996, 2012). In contrast, 
others claim that typical preschool environments require the implementation of strategic 
interventions to promote science learning (e.g., Fisher et al. 2013; Kirschner et al. 2006). 
These disagreements do not help with the difficulties of addressing children’s naïve beliefs and 
science misconceptions. The complexity-based taxonomy of science content can bridge these 
discrepant views and shed light on the ideal pedagogy. The crucial insight is that different 
types of science content require different types of pedagogy. 

Table 6 provides a guiding overview of the ideal pedagogy for each type of science content. 
Basic-level science content is the easiest to learn. Given that both SR variability and SR stability 
for this type of content are exceedingly obvious in children’s surroundings, nothing more is 
needed than a child’s self-guided explorations of the surrounding. The teacher simply has to 
provide a setting in which children can freely explore. Incidentally, nature can be an ideal 
setting for this to occur (Kloos et al. 2018). More generally, basic-level science content pertains 
to instances in which the mind seems innately eager to learn (cf. Kuhn 1989; Schulz 2012). 

Learning sub-ordinate level science content, by contrast, can be more problematic. Given 
that this type of content lacks SR variability, relevant differences have to be detected first. 
Consider again the example of types of butterflies. The difference between Monarch butterflies 
and Swallowtails has to be detected amid a busy pattern of colors, shapes, sizes, and behaviors 
of animals in the butterfly garden. To help, efforts need to be made to add SR variability 
strategically. For example, teachers could ask children to draw the butterflies they observe and 
then stimulate a discussion about differences in wing colors. Strategies of documenting and 
discussing observations along these lines have been found to be highly effective (e.g., 
Brenneman and Louro 2008; Fleer  1991; Fleer and Beasley 1991). 

Table 6 Example pedagogy for science content at each level 

Basic level Sub-ordinate level Super-ordinate level 

Ideal pedagogy Mere exposure 
Potential risks None 

Example activities: 
Life Science Exposure to nature 

Physical Science Exposure to states 
of matter 

Earth/Space Exposure to seasons 
Science 

Guided exposure 
Missed information 

Prompts to capture and 
talk about natural events 

Prompts to measure and 
talk about object properties 

Prompts to measure and 
talk about the weather 

Top-down intervention 
Mistaken beliefs 

Prompts to link life-cycle 
schema with nature 

Prompts to link density schema 
with object buoyancy 

Prompts to link water-cycle 
schema with weather 
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Most challenging is the learning of super-ordinate level science content. Given that this type 
of content lacks SR stability, it would be utterly insufficient to merely expose children to the 
natural, physical, or celestial world. The salient SR variability, without salient SR stability, will 
inadvertently highlight misleading stability, and thus lead to misconceptions. Even pointing 
out a surprising event would be insufficient for learning. For example, pointing out that the 
earth is round, not flat, might yield a mental network of a flat-shaped circular, rather than 
spherical, planet (e.g., Vosniadou and Brewer 1992). 

In spite of the evident challenges, learning super-ordinate level science content is not 
entirely off-limits for young children. It would require a dedicated teacher with a firm 
understanding of the relevant science, willing to modify the learning context strategically to 
establish a common thread between relevant experiences. Schematic representations are 
potentially useful here (also referred to as concept maps or conceptual models; e.g., Hunter 
et al. 2008; Gobert and Buckley 2000; Kenyon  et al.  2008; Novak  2010; Wiser and Smith 
2008). Schematic models give teachers the ability to highlight how events are stably connected 
to each other, while omitting superficial patterns of order (e.g., irrelevant stability in colors, 
shapes, and sizes). 

In sum, the complexity-based taxonomy of science content highlights the fact that different 
learning goals require different types of pedagogy. If the goal is to merely learn basic-level 
science content, children’s self-guided explorations are sufficient to promote early science 
learning. In contrast, if the goal is to learn sub-ordinate level science content, the teacher’s 
active involvement is needed, namely to strategically add the missing SR variability. Finally, if 
the goal is to learn super-ordinate level science content, caution is advised. This is because 
children’s self-guided explorations can lead to misconceptions. Carefully controlled instruc-
tional activities are needed to add the missing SR stability, for example by incorporating 
conceptual maps. Though not impossible, this can be difficult to accomplish in a typical 
preschool classroom. 

Conclusion and Limitations 

We sought to contribute to the discussion on early science education by using complexity 
theory as a guide to how the mind works. Under this framework, the mind forms networks of 
impressions that are sensitive to outside variability and that couple with other impressions on 
the basis of outside stability. This minimalistic model of the mind is specific enough to provide 
guidelines about the key determinants of learning: A successful learning context provides 
sufficient outside variability and sufficient outside stability. Applied to early science learning, 
this means that successful learning requires two conditions to be met: (1) the most readily 
available outside variability needs to be science-relevant, and (2) the most readily available 
outside stability needs to be science-relevant. Based on these considerations, we derived a 
taxonomy of science content that cuts across science domains and focuses instead on whether 
these two key determinants are met in a young child’s everyday surrounding. 

Notwithstanding the potential of the proposed account of learning, there are limitations that 
need to be considered carefully. On practical grounds, teachers must be able to correctly sort 
the science topics in their lesson plans to fit the identified taxonomy. Although we have 
provided a cursory guide towards this end, we simplified various aspects, including children’s 
individual differences. What seems novel for one child might be boring to another child, and 
what seems obviously ordered to one child might appear random to another child (cf. Tanaka 
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and Taylor 1991). Thus, while the complexity approach can be useful to derive insights about 
early science pedagogy, it cannot replace a teacher’s close supervision of children’s learning.  

On theoretical grounds, the limitations pertain to existing gaps in understanding the 
working of complex adaptive systems. For example, while thermodynamics has been univo-
cally identified as a driver of complex adaptive systems, little is known about how thermody-
namic pressure affects the sensitivity and cohesion of emergent networks. Relatedly, while 
learning has been established as an adaptation to outside variability and stability, little is 
known about how sensitivity and cohesion interface. Without clear answers to these questions, 
additional details about children’s learning remain speculative, including details about the 
attractors and control parameters of learning (for interesting speculations, see Deacon 2011; 
Ulanowicz 2012). 

Taken together, we have argued for the usefulness of applying the lens of complex adaptive 
systems to questions about learning and pedagogy. Research on early science education is 
divided on questions of best pedagogy, which often leaves educators to go by their own 
intuitions about how to meet the recommended science standards and address children’s 
science misconceptions. The complexity lens offers insights that can address these challenges. 
For example, it presents an argument against a ‘one-size-fits-all’ approach to early science 
pedagogy. It also cautions against a pedagogy that relies on engaging but disjointed demon-
strations, on the grounds that unorganized experiences foster the development of misconcep-
tions. Finally, it offers a way to organize the curriculum in a way that supports pedagogical 
decision-making, ultimately allowing for an integrated conversation about how to promote 
early science learning. 
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