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This research examined how differences in category structure affect category learning and category
representation across points of development. The authors specifically focused on category density—or
the proportion of category-relevant variance to the total variance. Results of Experiments 1–3 showed a
clear dissociation between dense and sparse categories: Whereas dense categories were readily learned
without supervision, learning of sparse categories required supervision. There were also developmental
differences in how statistical density affected category representation. Although children represented
both dense and sparse categories on the basis of the overall similarity (Experiment 4A), adults
represented dense categories on the basis of similarity and represented sparse categories on the basis of
the inclusion rule (Experiment 4B). The results support the notion that statistical structure interacts with
the learning regime in their effects on category learning. In addition, these results elucidate important
developmental differences in how categories are represented, which presents interesting challenges for
theories of categorization.
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The ability to form categories (i.e., treating discriminable enti-
ties as members of an equivalence class) is a critically important
component of human cognition. There is much research on cate-
gorization and category learning spanning early infancy to adult-
hood (see Murphy, 2002, for a review). Some results of this
research point to an interesting paradox: Whereas some categories
are learned in an effortless and unsupervised manner even by
young infants (Eimas & Quinn, 1994; Quinn, Eimas, & Rosen-
krantz, 1993; Younger & Cohen, 1986), other categories are dif-
ficult even for adult learners who are given feedback after each
trial (e.g., Bruner, Goodnow, & Austin, 1956). In this article, we
discuss a solution to this paradox, focusing on the role of category
structure on category learning and category representation across
points of development.

The Paradox of Category Learning

Consider the two sides of the above mentioned paradox. On the
one hand, young infants can exhibit effortless unsupervised cate-
gory learning of even ill-defined categories such as cat and dog
(Eimas & Quinn, 1994; Mareschal & Quinn, 2001; Quinn et al.,
1993). For example, in Quinn et al. (1993), 3- to 4-month-olds
were first familiarized with members of the category (e.g., pictures
of cats) and then shown new members of the studied category (e.g.,

new cats) paired with members of a nonstudied category (e.g.,
dogs). If infants learn the category during familiarization, they
should discriminate new members of studied categories from
members of nonstudied categories. Results indicated that with just
six familiarization trials, participants exhibited evidence of cate-
gory learning.

On the other hand, adults can have difficulty learning categories
that are well defined by Boolean algebra rules (Bruner et al., 1956;
Shepard, Hovland, & Jenkins, 1961). For example, in some of the
Bruner et al. (1956) experiments, participants had to learn a
category that included all and only items with green circles. On
each trial, participants were asked to determine whether a partic-
ular item belonged to the target category, and their responses were
followed by feedback. Despite the fact that these were well-
defined, strictly deterministic categories and despite the fact that
each trial was accompanied by feedback, learning of some cate-
gories elicited substantial difficulties.

Thus, some well-defined categories are difficult to learn even
for adult learners, whereas some ill-defined categories are effort-
lessly learned even by 3- to 4-month-olds. The ease of category
learning shown by infants cannot stem from the use of familiar
categories given that it was also demonstrated with novel artificial
stimuli (e.g., Bomba & Siqueland, 1983; Younger, 1993; Younger
& Cohen, 1986). Nor could the difficulty shown by adults stem
from the use of category-inclusion rules that are more complicated
than those used in infant studies. Animal categories are ill defined
and probabilistic and thus have more complex inclusion rules than
the deterministic well-defined categories used in the Bruner et al.
(1956) study. Finally, it is unlikely that the learning paradox stems
from a difference in stimulus complexity given that the infant
studies demonstrating category learning used both perceptually
rich stimuli (Quinn et al., 1993) and perceptually impoverished
ones (Bomba & Siqueland, 1983).
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We suggest that the explanation of the paradox has to do with
the difference in category structure between the categories used in
the infant studies and the categories used in adult studies. This
research focuses on an important aspect of category structure—the
statistical density of the category, or the ratio of category-relevant
variance to the total variance. More specifically, we suggest that
category structure interacts with the learning regime: Dense cate-
gories can be learned without supervision, whereas learning of
sparse categories requires supervision.

Before we further define this concept and its relation to learning
regime, it is important to note that statistical density is not the only
measure of category structure (for a review, see Medin, Lynch, &
Solomon, 2000). Structural differences considered before pertain
to syntactic differences (i.e., nouns vs. verbs; e.g., Gentner, 1981),
ontological differences (i.e., natural kinds vs. nominal kinds; e.g.,
Kripke, 1972), taxonomic differences (i.e., basic level vs. super-
ordinate level; e.g., Rosch & Mervis, 1975), differences in content
(i.e., entity categories vs. relational categories; e.g., Gentner &
Kurtz, 2005), differences in concreteness (i.e., concrete vs. abstract
categories; e.g., Barsalou, 1999), difference in linear separability
(i.e., linearly separable vs. nonlinearly separable; e.g., Medin &
Schwanenflugel, 1981; Waldron & Ashby, 2001), difference in
category coherence and confusability (e.g., Homa, Rhoades, &
Chambliss, 1979; Rouder & Ratcliff, 2004; J. D. Smith & Minda,
2000), differences in redundancy (e.g., Garner, 1962), and cate-
gory utility (Corter & Gluck, 1992). However, as we argue in the
General Discussion, below, statistical density may map onto some
of these distinctions—while offering important advantages.

Statistical Density

Any set of items can have a number of possible dimensions
(e.g., color, shape, size), some of which might vary and some of
which might not. Categories that are statistically dense have mul-
tiple intercorrelated features relevant for category membership,
with only a few features being irrelevant. Good examples of
statistically dense categories are basic-level animal categories such
as dog. Dogs have a particular range of shapes, sizes, and colors;
they have four legs and a tail; and they bark. These features are
jointly predictive, thus yielding a dense (albeit probabilistic) cat-
egory.

Categories that are statistically sparse have very few common
features, with the rest of the features varying independently and
thus constituting a set of irrelevant or surface features. Good
examples of sparse categories are scientific concepts such as
accelerated motion. Consider two events: (a) a planet revolving
around a sun and (b) a cat chasing a mouse. Only a single
relation—the change in the planet’s and the cat’s vector of mo-
tion—makes both events variants of accelerated motion. All other
features and feature relations are irrelevant for membership in this
category, and they can vary greatly.

Conceptually, statistical density is a ratio of variance relevant
for category membership to the total variance across members and
nonmembers of the category. Therefore, density is a measure of
statistical redundancy (Shannon & Weaver, 1948), which is an
inverse function of relative entropy. In general, density is a mea-
sure of nonrandomness or regularity, whereas entropy is a measure
of randomness. The advantage of expressing category structure
though entropy is that entropy has a great deal of computational

plausibility given that living organisms are claimed to be able to
automatically detect entropy in a set (e.g., Young & Wasserman,
2001).

Density can be expressed as

D � 1 �
Hwithin

Hbetween
, (1)

where Hwithin is the entropy observed within the target category
and Hbetween is the entropy observed between target and contrast-
ing categories. In what follows, we explain statistical density in
greater detail. Two aspects of stimuli are important for calculating
statistical density, variation in stimulus dimensions and variation
in relations among dimensions.

First, stimulus dimension may vary either within a category
(e.g., members of a target category are either black or white) or
between categories (e.g., all members of a target category are
black, whereas all members of a contrasting category are white).
Within-category variance decreases density, whereas between-
category variance increases density. We make a simplifying as-
sumption that the varying dimensions are binary (e.g., the size of
an entity is either big or small).

Second, dimensions of variation may be related (e.g., all items
are black circles), or they may vary independently of each other
(e.g., items can be black circles, black squares, white circles, or
white squares). Covarying dimensions result in smaller entropy
than dimensions that vary independently. On the basis of previous
evidence (cf. Whitman & Garner, 1962), we assume that only
dyadic relations (i.e., relations between two dimensions) are de-
tected spontaneously, whereas relations of higher arity (e.g., a
relation among color, shape, and size) are not. Therefore, only
dyadic relations are included in the calculation of entropy.

The total entropy is the sum of the entropy due to varying
dimensions (Hdim) and the entropy due to varying relations among
the dimensions (Hrel). More specifically,

Hwithin � Hwithin
dim � Hwithin

rel , (2a)

and

Hbetween � Hbetween
dim � Hbetween

rel . (2b)

The concept of entropy was formalized by information theory
(Shannon & Weaver, 1948), and we use these formalisms here.
First, consider the entropy due to dimensions. This within-category
and between-category entropy is presented in Equations 3a and 3b
respectively.1

Hwithin
dim � � �

i�1

M

wi� �
j�0,1

within� pjlog2pj��, (3a)

and

Hbetween
dim � � �

i�1

M

wi� �
j�0,1

between� pjlog2pj��, (3b)

1 Note that whenever a value of a dimension (or a relation between
dimensions) has a probability of zero, these values are not included into the
calculation because they do not contribute to the entropy.
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D = 1 minus (H within 
over H between)

Equation 
(1)

H within = H dim within + H rel 
within

Equation 
(2a)

H between = H dim between + H rel 
between

Equation 
(2b)

H dim within = - summation of i=1 to M, 
W subscript i [ summation of j = 0, 1 
within (p subscript j log^2p subscript j)]

Equation 
(3a)

H dim beteen = - summation from i=1 to M 
W subscript i [summation from j=0, 1 
between (p subscript j log^2 p subscript j)]

Equation 
(3b)



where M is the total number of varying dimensions, wi is the
attentional weight of a particular dimension (the sum of attentional
weights equals a constant), and pj is the probability of value j on
dimension i (e.g., the probability of a color being white). The
probabilities could be calculated within a category or between
categories.

The attentional-weight parameter is of critical importance—
without this parameter, it would be impossible to account for
learning of sparse categories. In particular, when a category is
dense, even relatively small attentional weights of individual di-
mensions add up across many dimensions. This makes it possible
to learn the category without supervision. Conversely, when a
category is sparse, only few dimensions are relevant. Supervision
is therefore necessary to direct attention to these relevant dimen-
sions.

Note that a maximal entropy due to a single dimension is
observed when two values of a dimension are equally probable
(e.g., half of the items are white and half of the items are black).
Assuming that the attentional weight of the dimension wi � 1.0,
the maximal entropy due to this dimension is 1. Any deviation
from equal probability of each value reduces the maximal entropy.

Next, consider the entropy that is due to a relation between
dimensions. To express this entropy, we need to consider the
co-occurrences of dimensional values. If dimensions are binary,
with each value coded as 0 or 1 (e.g., white � 0, black � 1,
circle � 0, and square � 1), then the following four co-occurrence
outcomes are possible: 00 (i.e., white circle), 01 (i.e., white
square), 10 (i.e., black circle), and 11 (i.e., black square). The
within-category and between-category entropy that is due to rela-
tions is presented in Equations 4a and 4b, respectively.

Hwithin
rel � � �

k�1

o

wk� �
m�0,1
n�0,1

within(pmnlog2pmn�], (4a)

and

Hbetween
rel � � �

k�1

o

wk� �
m�0,1
n�0,1

between� pmnlog2pmn��, (4b)

where O is the total number of possible dyadic relations among the
varying dimensions, wk is the attentional weight of a particular
relation (again, the sum of attentional weights equals a constant),
and pmn is the probability of a co-occurrence of values m and n on
dimension k. Again, these probabilities could be calculated either
within a category or between categories. As shown above, when
values are binary, mn can take values of 01, 01, 10, and 11. Given
that the total number of varying dimensions is M, the number of
dyadic relations O can be calculated using Equation 5:

O �
M!

�M � 2�!*2!
.

Note again that the entropy is maximal when each outcome is
equally probable, that is, when dimensions vary independently of
each other and each outcome occurs with the probability of .25. If
the attentional weight of a relation wk � 1.0, the entropy due to a
single relation is 2. However in reality, the attentional weight of a
relation is likely to be less than 1.0 given that a relation is more

difficult to detect than a single dimension. On the basis of empir-
ical data, we estimate that the weight of a relation is no more than
half of the weight of a dimension (see Appendix A for supporting
empirical evidence). Therefore, if we make a simplifying assump-
tion that the attentional weight of a dimension is 1.0, then the
attentional weight of a relation is 0.5.

For example, suppose that there are two dimensions of variation
(e.g., color and shape). All entities in the target category are white
circles, whereas all entities in the contrasting category are black
squares. Therefore, the within-category probability of white cir-
cles, white squares, black circles, and black squares is 1.00, 0, 0,
and 0, respectively, whereas the between-category probability of
these feature pairs is .50, 0, 0, and .50, respectively. The within-
category entropy due to the two dimensions Hdim � 0 � 0, and the
within-category entropy due to the color–shape relation Hrel � 0.
Therefore, the total within-category entropy Hwithin � 0, yielding
a category density of D � 1.00.

Now suppose that the relation between the dimensions is
weaker. Entities in the target category are white circles and black
squares, whereas entities in the contrasting category are black
circles and white squares. The within-category probability of white
circles, white squares, black circles, and black squares is .50, 0, 0,
and .50, respectively, whereas the between-category probability of
these feature pairs is .25, .25, .25, and .25, respectively. In this
case, nonweighted within-category entropy due to the two dimen-
sions is 1 � 1 � 2 (weighted Hdim � 2.0), and nonweighted
within-category entropy due to the relation is 1 (weighted Hrel �
0.5). The total weighted within-category entropy Hwithin � 2.5,
whereas the total weighted between-category entropy Hbetween �
3.0, yielding a category density of D � 0.17.

In what follows, we apply calculations of statistical density to
the well-known categories used by Shepard et al. (1961). Stimuli
in that study could vary on the three binary dimensions of size,
color, and shape (see Figure 1). We assume the attentional weight
of each dimension wdim � 1.0, the attentional weight of each
relation wrel � 0.5. Given that the same stimuli were used for all
six types of categories, the between-category entropy is the same.
Specifically, weighted between-category entropy due to dimen-
sions Hdim � 3.0, and weighted between-category entropy due to
relations Hrel � 3.0. This yields Hbetween � 6.0.

In the Type I category, color is a single fully predictive dimension
(i.e., all target items are black and all contrasting items are white),
with shape and size being equally distributed between target and
contrasting items. Therefore, the within-category entropy due to
dimensions is 2. The nonweighted within-category entropy due to
the relation color–size is 1 ( pblack large � .50, pblack small � .50,
p

white large
� 0, and pwhite small � 0). The same is true for the

nonweighted within-category entropy due to the relation color–
shape ( pblack square � .50, pblack triangle � .50, pwhite square � 0, and
pwhite triangle � 0). The nonweighted within-category entropy due
to the relation shape–size is 2 ( plarge square � .25, plarge triangle �
.25, psmall square � .25, and psmall triangle � .25). Therefore, the
weighted within-category entropy due to relations Hrel � 2.0.
Taken together, the total within-category entropy Hwithin � 4.0,
and the resulting density of this category D � 1 � (4/6) � 0.33.

In the Type II category, the only predictive feature is the
relation between color and shape. Target items are white
squares and black triangles, and contrasting items are
black squares and white triangles. Given that individual dimen-
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H rel within = - summation from k=1 to o W subscript k 
[summation from m=0,1 and n=0,1 within (p subcript mn 
log^2 p subscript mn)]

Equation 
(4a)

H rel between = - summation from k=1 to o W 
subscript k[summation from m=0,1 and n=0,1 
between (p subscript mn log^2 p subscript mn)]

Equation 
(4b)

O = M! over (M - 
2)! * 2!



sions are not predictive, the within-category dimensional en-
tropy Hdim � 3.0. The nonweighted within-category entropy
due to the predictive relation color–shape is 1 ( pwhite square �
.50, p black triangle � .50, pblack square � 0, and pwhite triangle � 0), and
the nonweighted within-category entropy due to each of the non-
predictive relations of shape–size and color–size is 2 ( plarge square �
p large triangle � psmall square � psmall triangle � plarge white � p large black �
psmall white � psmall black � .25). Therefore, the weighted relational
entropy Hrel � 2.5, the total weighted within-category entropy
Hwithin � 5.5, and the resulting density of this category D � 1 �
(5.5/6) � 0.08. Densities of other category types used by Shepard
et al. (1961) are presented in Figure 1.

Category Density and Category Learning

There is much evidence that sets of items with intercorrelated
dimensions are learned better than sets of items with uncorrelated
dimensions (Billman & Knutson, 1996; Garner, 1962; Whitman &
Garner, 1962). For example, participants exhibited better recall of
sets of geometric shapes that had simple within-set contingencies
(i.e., greater category density) than of those that did not (Whitman
& Garner, 1962). However, it is also known that people can ably
learn sparse categories defined by a single dimension, such as
categories defined only by color or only by shape (e.g., Kruschke,
1992; Nosofsky, 1986; Shepard et al., 1961; Trabasso & Bower,
1968; see also L. B. Smith, 1989, for a developmental proposal).
Interestingly, most of the studies demonstrating an advantage of
dense categories typically used unsupervised learning paradigms,
whereas studies demonstrating the ability to learn sparse categories
mainly used supervised learning paradigms.

We argue that the reason for this disparity has to do with
selective attention. Dense categories put small demands on selec-
tive attention because they have a high ratio of relevant to irrele-
vant information, and as a result, learning of statistically dense
categories does not require supervision. In fact, supervision may
hinder learning of dense categories. For example, an explicit
description of the many relevant features and feature correlations
in a dense category might put a high memory demand on the
learner and therefore make category learning more difficult. Su-

pervision may also invite participants to look for rules, something
that might impede learning of a dense category (cf. Reber, 1976).

Conversely, statistically sparse categories put high demands on
selective attention because they have a low ratio of relevant to
irrelevant information. The learner not only needs to know what to
focus on but also needs to ignore the large proportion of irrelevant
information. As a result, learning of statistically sparse categories
is likely to require some form of top-down information that spec-
ifies which dimensions are to be attended to and which are to be
ignored. Such top-down information could involve various kinds
of external supervision, including explicit instruction, corrective
feedback, guided comparisons, or negative evidence. The most
direct way of communicating what is relevant might be to provide
the learner with the category-inclusion rule.

If these considerations are correct, then it is reasonable to expect
that category structure would interact with the learning regime. In
particular, dense categories could be ably learned without super-
vision, whereas sparse categories would require supervision. Fur-
thermore, if learning of statistically sparse categories puts high
demands on selective attention, then it is reasonable to expect
developmental differences in learning of sparse categories. This is
because early in development, the ability to selectively attend to
relevant information is less pronounced than later in development
(Kirkham, Cruess, & Diamond, 2003; Napolitano & Sloutsky,
2004; Zelazo, Frye, & Rapus, 1996; see also Dempster & Corkill,
1999, for a review).

Category Density and Category Representation

Density of a category may affect not only category learning but
also category representation. Traditionally, researchers considered
two types of representations (see Murphy, 2002, for a review). One
type is a rule-based representation (i.e., a category is represented
by its inclusion rule), and the other type is a similarity-based
representation (i.e., a category is represented by either a prototype
or a set of exemplars). More recently, several hybrid models that
include both rule- and similarity-based representations have been
proposed (e.g., RULEX: Nosofsky, Palmeri, & McKinley, 1994;
ATRIUM: Erickson & Kruschke, 1998; COVIS: Ashby, Alfonso-

Figure 1. Category types used in the Shepard, Hovland, and Jenkins (1961) study: target items, contrasting
items, and statistical densities.
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Reese, Turken, & Waldron, 1998; see also E. E. Smith & Sloman,
1994). Does statistical density affect the way a category is repre-
sented? If yes, how does it affect category representation?

We consider several possibilities. First, it is possible that both
dense and sparse categories are represented in a rule-based manner
(cf. Bruner et al., 1956). For example, even the dense category cat
may be represented by the rule “everything that meows.” Alterna-
tively, it is possible that both dense and sparse categories are
represented in a similarity-based manner (cf. Allen & Brooks,
1991). For example, even the sparse category accelerated motion
may be represented by examples of what such movement looks
like. Yet another alternative is that dense and sparse categories are
represented differently. For dense categories, the learner might
form similarity-based representations given that appearance fea-
tures are likely to be relevant for category membership. For sparse
categories, on the other hand, the learner might form rule-based
representations given that appearance features are likely to be
irrelevant for category membership. Finally, it is possible that the
type of category representation changes in the course of develop-
ment. Similarity-based representations may appear early in devel-
opment (French, Mareschal, Mermillod, & Quinn, 2004), whereas
rule-based representations may develop later. This last possibility
is consistent with the recently proposed similarity-based theory of
early categorization (e.g., Sloutsky, 2003; Sloutsky & Fisher,
2004), as well as with some earlier-proposed theoretical views
(e.g., see Keil, 1989).

Overview of Current Experiments

The goal of the current experiments was to test the hypotheses
formulated above and to examine how dense and sparse categories
are learned and represented across points of development. To
achieve this goal, we conducted a series of experiments with adults
and preschool children in which we manipulated the statistical
density of the category. Experiments 1–3 focused on category
learning, whereas Experiment 4 focused on category representa-
tion.

In Experiments 1–2, we examined how dense and sparse cate-
gories are learned in adults and children. Participants were pre-
sented with dense or sparse categories under an unsupervised
learning condition (learners were presented only with members of
the target category2) or under a supervised learning condition
(learners were given the explicit description of the category-
inclusion rule). The principal difference between the two experi-
ments was that categories were linearly separable in Experiment 1
(i.e., the categories could be separated on the basis of summed
dimensional values), whereas categories were not separable in
Experiment 2 (i.e., the target and contrast categories were defined
by relations among dimensions and not by individual dimensions).

Experiment 3 examined whether statistical density is a better
predictor of category learning than alternative predictors, such as
the total number of dimensions or the absolute number of relevant
dimensions. Finally, in Experiment 4, we examined the represen-
tation of dense and sparse categories in adults and children. This
time, dense and sparse categories were acquired under the same
learning condition: Participants were presented with an explicit
description of the target category and with individual members of
the target category. After training, participants were given a sur-
prise recognition task in which they had to determine whether a

test item had been presented during training. If participants form a
similarity-based representation of the learned category, they
should false-alarm on new items that are similar in appearance to
training items. On the other hand, if participants form a rule-based
representation of the learned category, they should false-alarm on
new items that have the same rule as the training items.

Experiment 1

The goal of Experiment 1 was to examine the effects of category
density on category learning in adults (Experiment 1A) and in
children (Experiment 1B). The experiment used artificial creature-
like stimuli that had several dimensions of variation (e.g., the
shading of the body, the size of the wings, the number of antennas,
etc.). In the statistically dense category, all of these dimensions
were predictive of category membership (i.e., items of the target
category had a dark body, long wings, etc.). In the statistically
sparse category, only one of the dimensions (e.g., the shading of
the body) was predictive, whereas all other dimensions varied
randomly. Category information was presented either in an unsu-
pervised learning condition (participants were merely presented
with members of the category) or in a supervised learning condi-
tion (participants were explicitly told the category-inclusion rule).
On the basis of the considerations presented above, we expected
that the statistically sparse category would require supervision,
whereas the statistically dense category could be ably learned
without supervision.

Experiment 1A

Method

Participants. For this and subsequent experiments with adults,
participants were Introductory Psychology students at The Ohio
State University who participated in the experiment for a partial
course credit. Sixty participants took part in this experiment (41
women and 19 men). Additionally, 2 participants were tested and
omitted from the sample because their accuracy on catch trials did
not meet the criterion (see Procedure, below).

Materials and design. The stimuli were colorful drawings of
artificial creatures (see Figure 2). Each instance could vary on six
dimensions: size of tail, size of wings, number of buttons, number
of fingers, shading of body, and shading of antennas. Each dimen-
sion had two levels (e.g., a short wing and a long wing). However,
to ensure some variability among category members, each level
had two values (e.g., the short wing could be 1.8 or 2.3 cm, and the
long wing could be 4.6 or 5.6 cm).

Stimuli were created such that they belonged either to a statis-
tically dense category (i.e., each dimension was predictive of the
category membership) or to a statistically sparse category (i.e.,
only one dimension was predictive). Table 1 shows the structure of
the target and contrasting items in abstract notation. Target items
of the dense category had short tails, short wings, few buttons, few
fingers, light bodies, and light antennas, whereas contrasting items
had long tails, long wings, many buttons, many fingers, dark
bodies, and dark antennas. For the sparse category, target items

2 The term unsupervised refers to a manner of learning that lacks any
top-down information about the category’s inclusion rule.
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had a short tail, and contrasting items had a long tail. All other
dimensions varied randomly across items. The statistical density of
the dense category was 1.00, and the density of the sparse category
was 0.17 (for detailed calculations, see Appendix B).

The experiment had a 2 (category type: dense vs. sparse) � 2
(learning condition: unsupervised vs. supervised) between-
subjects design. Participants were randomly assigned to one of the
four resulting conditions.

Procedure. In this and all other experiments with adults
reported here, participants were tested in a quiet room on

campus. The experiments were administered on a computer and
were controlled by SuperLab Pro 2.0 software (Cedrus Corpo-
ration, San Pedro, CA). Participants were instructed that they
had to learn to distinguish fictitious creatures called Ziblets
(i.e., target items) from creatures that were not Ziblets (i.e.,
contrasting items).

The procedure included a training phase and a testing phase,
with only the training phase differing across learning condi-
tions. During training in the unsupervised learning condition,
participants were presented with 16 target instances, one by

Figure 2. Examples of stimuli used in Experiment 1.

Table 1
Structure of Stimuli Used in Experiment 1

Dimension

Dense category Sparse category

Target item Contrast item Target item Contrast item

Size of tail 0 1 0 1
Size of wings 0 1 . . . . . .
Number of fingers 0 1 . . . . . .
Number of buttons 0 1 . . . . . .
Shading of body 0 1 . . . . . .
Shading of antennas 0 1 . . . . . .

Note. The numbers 0 and 1 refer to the features of the respective dimension (e.g., 0 � short, 1 � long). Features
varied randomly in the cells marked with an ellipsis (. . .). Each feature had two levels within a category to allow
for some variability among items.
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one, in a self-paced manner. During training in the supervised
learning condition, participants were not presented with any
instances. Instead, they were presented with a statement de-
scribing the necessary and sufficient features of target items.
For the dense category, participants were given the following
statement: “Ziblets have a light body, a short tail, two or three
buttons, short yellow wings, and one or two fingers on each
yellow wing.” For the sparse category, the statement was, for
example, “Ziblets have a short tail.” Each feature mentioned in
the statement about the sparse category was accompanied by a
picture showing the isolated feature. Note that participants did
not obtain any information about the contrasting category in
either learning condition.

The testing phase was administered immediately after the
training phase. Participants were presented with 32 test items,
half of which were target items and half of which were con-
trasting items. The task was to determine whether or not the
shown item was a Ziblet. Eight catch trials followed as a test of
a participant’s overall alertness. These catch trials consisted of
non-Ziblets with new features (i.e., they had a diamond-shaped
body, triangle-shaped wings, and no tail). It was expected that
participants accurately reject these items regardless of category
structure or learning condition. To be included in the study,
participants had to reject at least six out of the eight catch items.

Results and Discussion

To evaluate learning of the target category, accuracy scores
were calculated for each participant across the 32 test items.
Accuracy scores represented the difference between the propor-
tions of hits (i.e., correct identification of a Ziblet) and false
alarms (i.e., an incorrect identification of a non-Ziblet as a
Ziblet). In principle, these scores can vary from 1 (i.e., perfect
discrimination between Ziblets and non-Ziblets) to �1 (i.e., a
“reverse discrimination” between Ziblets and non-Ziblets).
However, in practice, the reverse discrimination and resulting
negative scores are unlikely. It was therefore expected that
scores would vary from 0 (i.e., no discrimination) to 1 (i.e.,
perfect discrimination).

Mean accuracy scores by category type and learning condition
are presented in Figure 3A. These accuracy scores were subjected
to a 2 (category type: dense vs. sparse) � 2 (learning condition:
unsupervised vs. supervised) between-subjects analysis of variance
(ANOVA). The analysis revealed a significant interaction, F(1,
56) � 19.60, p 	 .001. Although mean accuracy was above zero
in all conditions (single-sample ts 
 8.10, p 	 001), the dense
category was learned better in the unsupervised than the super-
vised condition, independent-sample t(30) � 4.30, p 	 .001,
whereas the sparse category was learned better in the supervised
than the unsupervised condition, independent-sample t(26) � 3.30,
p 	 .01. These results support the hypothesis that category struc-
ture interacts with learning regime.

Having found the interaction between category density and
category learning in adults, we deemed it necessary to examine this
interaction early in development. If learning of sparse categories
puts greater emphasis on selective attention than learning of dense
categories, then it is reasonable to expect that young children
would exhibit greater difficulty than adults in acquiring statisti-
cally sparse categories without supervision. At the same time,

because acquisition of dense categories does not put emphasis on
selective attention, young children should ably acquire these cat-
egories without supervision.

Experiment 1B

Method

Participants. For this and all subsequent experiments with
children, participants were 4- and 5-year-olds recruited from pre-
schools located in middle-class suburbs of Columbus, Ohio. Par-
ticipants in this experiment were 49 children (Mage � 58.6 months,
SD � 3.7 months; 25 girls and 24 boys) assigned randomly to one
of the four conditions used in Experiment 1A.

Materials, design, and procedure. Materials, design, and pro-
cedure were similar to those in Experiment 1A, with the fol-
lowing exceptions. First, children were given a cover story
involving a character who would like to get a pet from a
magical store. Second, each rule (for the dense and sparse
categories) was repeated three times, and each feature descrip-
tion was again accompanied by a picture showing the isolated
feature. Finally, to shorten the experiment, catch trials were not
used in the testing phase.
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Figure 3. Mean accuracy scores by category type and learning condition
in Experiment 1A (Panel A) and 1B (Panel B). Error bars represent
standard errors of the mean. FA � false alarms.
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Results and Discussion

Mean accuracy scores by category type and learning condition
are presented in Figure 3B. A 2 (category type: dense vs. sparse) �
2 (learning condition: unsupervised vs. supervised) between-
subjects ANOVA rendered the predicted interaction significant,
F(1, 45) � 62.00, p 	 .001. For the dense category, average
accuracy scores were significantly higher in the unsupervised than
the supervised condition, t(21) � 2.28, p 	 .05, whereas for the
sparse category, the scores were significantly higher in the super-
vised than in the unsupervised condition, t(24) � 10.91, p 	 .01.
Therefore, the dissociation between dense and sparse categories
was observed again: Children ably learned the dense category
without supervision, whereas learning of the sparse category re-
quired supervision.

Furthermore, in contrast with adults, who exhibited evidence
of learning of the sparse category in the unsupervised condition
(see Experiment 1A), children exhibited no evidence of learn-
ing the sparse category in the unsupervised condition (single-
sample t 	 1.0). This finding suggests that young children, who
have difficulty in deliberately controlling their attention, could
not spontaneously discover the relevant dimension, focus on
this dimension, and ignore irrelevant dimensions in the course
of category learning.

Experiment 1C

Experiments 1A and 1B present evidence that participants
successfully learned dense categories without supervision,
whereas learning of sparse categories required supervision, at
least for young children. However, these experiments leave an
important question unanswered. Did participants rely on the
holistic pattern of correlated features when learning a dense
category without supervision, or did they focus on a single
feature? If the latter possibility is the case, it can have one of
two variants. First, it is possible that most participants focused
on the same single feature, with learning of this feature being
supported by the presence of other correlated features. Alter-
natively, it is possible that different participants focused on
different features—in the dense condition, many features are
predictive of category membership, and focusing on any of
them would result in successful category learning (cf. Trabasso
& Bower, 1968). To distinguish among these possibilities,
testing items were modified in such a way that the correlated
structure of features was lost.

As was done in Experiments 1A and 1B, adults and children
were asked to learn the dense category through the unsuper-
vised learning condition, and their learning was then assessed
by asking them to distinguish unmodified target items (Ziblets)
from unmodified contrasting items (Flurps). An additional test-
ing phase was added that contained a crucial manipulation:
Ziblets had a planted feature of a Flurp, and Flurps had a
planted feature of a Ziblet. The important measure was the
degree to which participants categorized the modified items on
the basis of the planted feature. One of four different features
was planted in modified stimuli. To account for the possibility
that different participants might focus on a different feature
when categorizing an item, we calculated for a participant four
separate categorization scores, one categorization score for each

of the four individual features. We then compared a partici-
pant’s highest feature-based categorization score of modified
items with his or her categorization score of unmodified items.

If items are categorized on the basis of the single feature,
then a participant’s highest categorization score of the modified
items should be comparable with his or her categorization score
of unmodified stimuli. However, if participants attempt to cat-
egorize on the basis of the holistic pattern of correlated features,
then categorization scores of modified items should be substan-
tially lower than those of unmodified items.

Method

Participants. Participants were 18 children (Mage � 58.5
months, SD � 3.3 months; 10 girls and 8 boys) and 22 adults (11
women and 12 men). None of them participated in the previous
experiments.

Materials, design, and procedure. To determine whether
learners pay attention to the pattern of correlated features of the
dense category (rather than extract an isolated feature during the
learning task), we created a second set of testing stimuli for which
a salient feature of one category (e.g., the tail of a Ziblet) was
planted into the stimulus of the other category (resulting in a
modified Flurp). Each of these features was planted one at a time,
thus resulting in four types of modified stimuli: those that had a
planted wing, those that had a planted tail, those that had a planted
body, and those that had planted antennas.3

The procedure consisted of a training phase and two testing
phases. The training phase was identical to the training phase used
in Experiments 1A and 1B for unsupervised learning of the dense
category: Participants were shown target stimuli, one by one, in a
self-paced manner, and asked to learn about Ziblets. The ensuing
testing phases required participants to categorize stimuli presented
for a short time (200 ms for adults and 750 ms for children). This
speed pressure was introduced to elicit the most basic pattern of
categorization and to prevent participants from deploying multiple
categorization strategies.4 During the first testing phase, learners
had to categorize unmodified items (half of which were Ziblets and
half of which were Flurps). This was done to establish how well
participants had learned the dense category. During the second
testing phase, learners had to categorize the modified stimuli (half
of which were Ziblets that had one Flurp feature and half of which
were Flurps that had one Ziblet feature).

If participants base their categorization of dense categories on
individual features, the following prediction can be made: For each
participant, there should be at least one type of modified stimuli for
which feature-based categorization of these items is comparable to
categorization of unmodified items. This should not be the case,
however, if participants categorize dense categories on the basis of

3 Pilot testing revealed that wings, tail, antennas, and body of the
creature represented the most salient features of the stimuli. In this pilot
experiment, adult participants (n � 16) were presented with target and
contrasting items of the dense category and asked to write down features
differentiating Ziblets and Flurps. The four features were mentioned at
least once by at least one participant.

4 These presentation times were determined in a separate calibration
experiment as sufficient for distinguishing between unmodified target and
contrasting item by children and adults.
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the entire pattern. Here, categorization of unmodified items should
exceed feature-based categorization of modified items.

Results and Discussion

Five categorization scores were calculated for each participant,
one to reflect a participant’s categorization of unmodified items
and four to reflect a participant’s categorization of modified
items—one for each type of planted feature (antenna, body, tail,
and wing). Each categorization score could vary from 0 to 1.0,
with .5 reflecting chance performance. The categorization score
for unmodified items measured the proportion of correctly cate-
gorizing unmodified Ziblets as Ziblets and unmodified Flurps as
Flurps. The categorization score for modified items reflected the
proportion of categorizing on the basis of the planted feature (e.g.,
categorizing a Ziblet with Flurp’s tail as a Flurp).

The primary analysis focused on participants’ categorization
scores of unmodified versus modified items. Only one catego-
rization score of modified items was used for each participant,
namely, the one that was highest for the participant. This is
because different participants could have relied on different
individual features, in which case averaging across subsets of

modified items would have resulted in a loss of this informa-
tion. For example, if a participant categorizes on the basis of a
creature’s tail, the only relevant feature-based categorization
score would be the categorization score of stimuli that have a
planted tail. Another participant might focus on a creature’s
body, in which case this participant’s highest feature-based
categorization score would be for the subset of stimuli that have
a planted body. We then compared this highest feature-based
categorization score of modified items with a participant’s
categorization of unmodified items.

The results are presented in Figure 4A. Data in the figure clearly
indicate that categorization of unmodified items exceeded feature-
based categorization of modified items for both children and
adults. A two-way mixed ANOVA (Age � Stimulus Type) indeed
revealed a significant main effect of stimulus type, F(1, 39) �
34.08, p 	 .0001. Neither the main effect of age nor the interaction
approached significance (both ps 
 .25). These findings indicate
that categorization of unmodified items was based on the entire
pattern rather than on a single feature, thus undermining the
possibility that participants categorized dense categories on the
basis of a single feature.
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Figure 4. Mean categorization scores in Experiment 1C for adults and children. Error bars represent standard
errors of the mean. A: Categorization score of unmodified stimuli and best feature-based categorization score of
unmodified stimuli. B: Feature-based categorization scores by the type of modified stimuli (antenna, body, tail,
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Could it be that participants were merely tired because modified
items were presented in the second block, with fatigue generating
chance performance? If this is the case, then reliance on all planted
features should be around chance. At the same time, if participants
tended to focus on the overall pattern even when items were
modified, then reliance on the remaining planted features should
be below chance. The results of feature-based categorization re-
sponses for the four planted features are presented in Figure 4B.
They indicate that for three out four planted features, both children
and adults exhibited below-chance feature-based categorization
(all one-sample ts 
 3.80, ps 	 .002).

Taken together, these results strongly indicate that unsupervised
learning of dense categories is driven by the entire pattern of
correlated features rather than by attending to a single feature. This
is true even though the dimensions are separable, not integral.
These results provide further evidence that dense and sparse cat-
egories are learned differently: Although learners focused on the
isolated predictive feature when learning the sparse category, they
focused on the pattern of correlated features when learning the
dense category.

Experiment 2

One could argue that efficient learning of the statistically dense
category shown in Experiment 1 stemmed from high within-
category similarity rather than from high statistical density. High
density in Experiment 1 was confounded with high similarity
among category members, but high density does not have to
co-occur with high similarity. A more stringent test of statistical
density would be to use statistically dense categories that do not
have high within-category similarity (i.e., categories that are not
linearly separable).

To achieve this goal, we modified stimuli from Experiment 1 in
such a way that category membership was predicted by a relation
between dimensions rather than by one or more individual dimen-
sions. As a result, the same features occurred in both the target and
the contrasting categories, which substantially attenuated the
within-category similarity. Several relations were predictive of
category membership for the statistically dense category, but they
varied independently for the statistically sparse category (with
only one relation being predictive of category membership). Find-
ing a dissociation between dense and sparse categories using
nonlinearly separable categories would expand the generalizability

of findings of Experiment 1. This hypothesis was tested with adults
(Experiment 2A) and children (Experiment 2B).

Experiment 2A

Method

Participants. Participants were 60 adults (28 women and 32
men), none of whom participated in the previous experiments, who
were randomly assigned to one of the four conditions used in
Experiment 1. Additionally, nine adults (between two and three in
each condition) were tested and excluded from the sample because
their performance on the catch items did not reach the criterion
(see Procedure).

Materials and design. The stimuli were similar to those used
in Experiment 1A with one important difference: Category mem-
bership was determined by relations among dimensions rather than
by individual dimensions. For the statistically dense category
(density � 0.39; see Appendix B for details of density calcula-
tions), all dimensions covaried within the category. For example,
an instance with a short tail, short wings, and long fingers had a
dark body, dark antennas, light buttons, few fingers, and few
buttons. Examples of stimuli are shown in Figure 5, and their
abstract structure is presented in Table 2. Note that category
members differed from each other in terms of individual features.
For example, one member could have a short tail, and another
member could have a long tail. Furthermore, target items did not
differ from contrasting items in terms of individual features. For
example, both target and contrasting items could have a short tail
(see Figure 5).

To ensure that within-category similarity was indeed compara-
ble to between-category similarity, we asked a separate group of
adults (n � 19) to rate the similarity between target items (i.e.,
within-category similarity) and the similarity between target and
contrasting items (i.e., between-category similarity). A 9-point
rating scale was used, with 1 representing not similar at all and 9
representing very similar. The results point to virtually equivalent
within- and between-category similarity, with the mean within-
category similarity being 5.27 and the mean between-category
similarity being 5.00, paired sample t(18) 	 1.00.

For the statistically sparse category, the varying dimensions
were the size of wings, the shading of antennas and body, and the
number of tails, buttons, and fingers. Only one relation was cate-

Figure 5. Examples of stimuli for the dense-category conditions used in Experiment 2.
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gory relevant, with the other dimensions varying randomly. More
specifically, target items had fewer body buttons than tails plus
fingers, whereas contrasting items had more body buttons than
tails plus fingers. For example, a target item could have five
buttons, three tails, and four fingers, resulting in fewer buttons than
tails plus fingers. The numbers of buttons, tails, and fingers were
chosen in such a way that neither the number of a single feature
nor the correlation between two of the features was predictive.
This ensured that no other information (e.g., difference in quantity)
was redundant with the inclusion rule. Given that the inclusion rule
was based on a triadic relation that was not expected to be detected
spontaneously, the total density of the sparse category was 0.
Therefore, this category should have been difficult, if not impos-
sible, to learn without supervision.

As in Experiment 1, this experiment had a 2 (category type:
dense vs. sparse) � 2 (learning condition: unsupervised vs. super-
vised) between-subjects design. Participants were randomly as-
signed to one of the four resulting conditions.

Procedure. The number of training trials in the unsupervised
learning condition was increased to 32 to ascertain that participants
would learn the more complex nonlinearly separable categories.
The explicitly stated inclusion rule for the statistically dense cat-
egory was “A Ziblet with a dark body has dark antennas, long
wings, a long tail, one or two short fingers, and two or three light
buttons; and a Ziblet with a light body has light antennas, short
wings, a short tail, four or five long fingers, and five or six dark
buttons.” For the statistically sparse category, the explicitly stated
inclusion rule was “For a Ziblet, the number of buttons is smaller
than the number of tails and fingers together.” To make the
mathematical relation of the sparse category clear, the rule was
accompanied by an example in which a particular number of
buttons, fingers, and tails were depicted separately.

Results and Discussion

Mean accuracy scores (the proportion of hits minus the propor-
tion of false alarms) by category type and learning condition are
presented in Figure 6A. Category learning was again a function of
statistical density and learning condition. A 2 (category type: dense
vs. sparse) � 2 (learning condition: unsupervised vs. supervised)

between-subjects ANOVA confirmed the significant interaction,
F(1, 56) � 46.14, p 	 .001. As in Experiment 1, participants
learned the statistically dense category better without than with
supervision, whereas they learned the statistically sparse category
better with supervision than without (independent-sample ts 

3.30, ps 	 .001). Furthermore (and unlike Experiment 1), the
sparse category used in Experiment 2 was not learned at all
without supervision, with mean accuracy not being different from
zero, t(14) � 0.41, p 
 .68.

These results replicate and further extend findings of Experi-
ment 1 by using statistically dense yet nonlinearly separable cat-

Table 2
Structure of Stimuli in the Dense Category Used in Experiment 2

Dimension

Target category
Contrasting

category

Item 1 Item 2 Item 1 Item 2

Size of tail 0 1 0 1
Size of wings 0 1 1 0
Size of fingers 1 0 0 1
Shading of body 0 1 0 1
Shading of antennas 0 1 1 0
Shading of buttons 1 0 0 1
Number of fingers 0 1 0 1
Number of buttons 0 1 1 0

Note. The numbers 0 and 1 refer to the features of the respective dimen-
sion (e.g., 0 � short tail, 1 � long tail). Each feature had two levels to
allow for some variability among items.

Figure 6. Mean accuracy scores by category type and learning condition
in Experiments 2A and 2B. Error bars represent standard errors of the
mean. FA � false alarms.
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Category

Target 
Category

Contrasting 
category

Contrasting 
category

Dimension Item 1 Item 2 Item 1 Item 2

Size of tail 0 1 0 1
Size of wings 0 1 1 0
Size of fingers 1 0 0 1
Shading of body 0 1 0 1
Shading of antennas 0 1 1 0
Shading of buttons 1 0 0 1
Number of fingers 0 1 0 1
Number of buttons 0 1 1 0



egories. The results suggest that the dissociation between category
structure and learning regime is driven by the difference in statis-
tical density rather than by a difference in within- versus between-
category similarity.

Although the idea of statistical density can account for the entire
pattern of results, it is possible that other factors might account for
results of individual cells. First, it is possible that learning of dense
categories in the supervised learning condition was affected by the
length and difficulty of the category’s inclusion rule. In particular,
participants might have thought that they had to pay attention to all
the features mentioned in the rule. To address this possibility, a
new group of adults (n � 15; 7 women and 8 men) was tested in
their ability to learn the dense category through explicit instruc-
tion. The only difference in the procedure was that the verbal
description of the dense category was shorter, containing only two,
rather than six, features. For example, adults were told, “A Ziblet
with a dark body has dark antennas, and a Ziblet with a light body
has a short tail.” Despite this simplification, the mean accuracy in
the ensuing test (M � 0.63, SE � 0.07) did not exceed the
accuracy score of participants who learned the dense category
through mere exposure (M � 0.68, SE � 0.05). This finding
supports the conclusion that explicit instruction about the inclusion
rule does not facilitate learning of a dense category even when the
inclusion rule is shorter.

Second, it is possible that adults could not learn the sparse
category through the unsupervised learning regime because the
sparse category was based on an unusually difficult category-
inclusion rule. To address this issue, we constructed a sparse
category that was comparable to the dense category in that the
correlation between two features mattered. Specifically, the corre-
lation between a creature’s number of fingers and number of
buttons was predictive of category membership, whereas all other
feature correlation varied randomly. In abstract notation, the struc-
ture of target items was 11xxxxxx and 00xxxxxx (Ziblets with
many fingers had many buttons, and Ziblets with few fingers had
few buttons), whereas the structure of the contrasting items was
10xxxx and 01xxxx (non-Ziblets with many fingers had many
buttons, and non-Ziblets with few fingers had few buttons). The
density of this category was 0.03 (see Appendix B). A new group
of adults (n � 24; 13 women and 11 men) learned this category
either in the unsupervised learning regime (they were presented
with members of the target category) or in the supervised learning
regime (they were given the explicit inclusion rule of the target
category). The results show the predicted effect of learning regime,
t(22) � 4.42, p 	 .01, with the mean accuracy score being higher
under the supervised learning regime (M � 0.58, SE � 0.06) than
under the unsupervised learning regime (M � 0.11, SE � 0.07).
Thus, the effect of learning regime on the learning of a sparse
category was confirmed even with a more straightforward and
simpler sparse category.

Experiment 2B

The goal of Experiment 2B was to examine learning of nonlin-
early separable categories early in development. If category den-
sity contributes to category learning, then it is reasonable to expect
that even young children should ably learn a nonlinearly separable
dense category without supervision. Furthermore, it appears highly
unlikely that young children are capable of learning a sparse

category without supervision given that adults did not exhibit such
learning. Finally, given the difficulty of ignoring irrelevant infor-
mation early in development, it was expected that young children
would exhibit weaker learning of this exceedingly sparse category
than adults did in Experiment 2A.

Method

Participants. Participants were sixty 4- and 5-year-olds
(Mage � 60 months, SD � 4.1 months; 31 girls and 29 boys), with
about equal numbers of children participating in each of the four
conditions. An additional 28 children were tested and omitted from
the sample because their performance in the catch trials did not
meet the criterion (see Materials, design, and procedure).

Materials, design, and procedure. Materials and design were
identical to those used in Experiment 2A, with the cover story
identical to the one used in Experiment 1B. Pilot results with a
separate group of 4- and 5-year-olds indicated that 24 learning
trials would be sufficient for learning the dense category. Given
that a lengthy procedure could be fatiguing for young children, the
number of learning trials was limited to 24.

In the supervised learning condition, children were presented
with the category-inclusion rule, identical to the one used for the
adults in Experiment 2A. To make the mathematical relation
among buttons, tails, and fingers more obvious, we arranged the
relevant features depicted in the verbal description of the rule in
two lines (one line of buttons and one line of tails and fingers
together) with equal spacing between each of the elements. The
line of buttons was visibly shorter than the line of tails and fingers.
Similar to previous experiments, no pictures of creatures were
presented in the supervised condition. Each rule (for the dense and
sparse category) was repeated three times with three different
depictions of the features.

The testing phase was identical to that in Experiment 2A, with
the exception of having fewer testing trials (only 16 instead of 32)
and fewer catch trials (six instead of eight). To be included in the
study, children had to reject four of the catch trials.

Results and Discussion

Mean accuracy scores by category type and learning condition
are presented in Figure 6B. A 2 (category type: dense vs. sparse) �
2 (learning condition: unsupervised vs. supervised) between-
subjects ANOVA rendered the predicted interaction significant,
F(1, 56) � 14.46, p 	 .001. For the dense category, average
accuracy scores were significantly higher in the unsupervised than
the supervised condition, independent-sample t(30) � 2.70, p 	
.01, whereas for the sparse category, the scores were significantly
higher in the supervised than the unsupervised condition,
independent-sample t(26) � 2.50, p 	 .02. Furthermore, there was
no evidence of learning the dense category in the supervised
condition, and there was no evidence of learning the sparse cate-
gory in the unsupervised condition (mean accuracy scores did not
different from zero; one-sample ts 	 1.00, ps 
 .34). These results
support the predictions revealing the same learning dissociation
found for children in Experiment 1B and for adults in Experiments
1A and 2A: The unsupervised learning condition favored acquisi-
tion of the statistically dense category, and the supervised learning
condition favored acquisition of the statistically sparse category.
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Overall, Experiments 1–2 underscore the dissociation between
statistically dense and sparse categories for both adults and chil-
dren. It could be argued, however, that the reported findings reflect
the difference in the overall number of relevant dimensions (or
relations among dimensions) rather than statistical density, which
is the ratio of relevant to irrelevant dimensions. Experiment 3
addressed this question by manipulating (a) the number of relevant
dimensions, (b) the total number of dimensions, and (c) the sta-
tistical density of the category. If category learning is indeed a
function of density, there should be a strong correlation between
the statistical density of a category and its ease of acquisition.

Experiment 3

Method

Participants. Participants were 224 adults (127 women and 97
men), none of whom participated in any of the previous experi-
ments. They were randomly assigned to one of the 15 conditions,
with about equal numbers of participants in each condition.
Twenty-one participants were tested and omitted from the sample
because of their low performance on catch trials.

Materials and design. To eliminate potential differences in
salience of dimensions, we created a new set of stimuli for which
all varying dimensions pertained to the shading of shapes. The

stimuli were drawings of creatures that consisted of same-sized
shapes (circles, triangles, and diamonds) of different colors and
pattern (see Figure 7 for examples). To increase somewhat the
within-category variability, the creatures had different kinds of
line-drawn shoes.

Depending on condition, items could have 1, 3, 5, 7, or 10
shapes. Category membership was defined by color variation in all
or just a subset of the shapes. Table 3 presents the resulting
between-subject conditions as a function of (a) the total number of
dimensions and (b) the number of relevant dimensions. The sta-
tistical density of the categories in each condition is given in the
respective cell of Table 3. Note that the diagonal cells in Table 3
have categories with identical densities even though the categories
differ in the total number of dimensions and the number of relevant
dimensions. Acquisition of these categories should be equivalent if
statistical density is the crucial factor.

Procedure. Participants had to distinguish between poisonous
and harmless creatures. During training, participants were pre-
sented with 16 poisonous creatures (target category) and were
instructed to pay particular attention to the color of the creature’s
body parts. During the test phase, participants were presented with
a new set of 16 items, half of which belonged to the target category
and half of which belonged to the contrasting category (harmless
creatures). To check overall alertness, we presented participants

Figure 7. Examples of a stimuli used in Experiment 3 for the categories with density D � 1.00.
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with eight catch trials at the end of the testing phase. The catch
items were creatures with a new number of body parts and new
colors. To be included in the study, participants had to reject at
least six out of the eight catch items.

Results and Discussion

Accuracy scores were calculated for each participant. The mean
scores by condition are presented in Table 4. These scores were
subjected to a regression analysis with the predictors density, total
number of dimensions, and number of relevant dimensions. The
analysis revealed a significant effect of the model, F(3, 220) �
52.00, p 	 .001, with density being the only significant predictor
(� � .62, t � 4.12, p 	 .0001). Neither the total number of
dimensions (� � �.02, t � �1.54, p 
 .12) nor the number of
relevant dimensions (� � .01, t 	 1.00, p 
 .5) was significant.
These results undermine the possibility that participants’ ability to
learn the category was affected by extraneous variables that might
sometimes correlate with statistical density. Not only was category
density the best predictor of categorization accuracy, it also was a
highly accurate predictor, with density accounting for 88% of
variance in categorization accuracy (see Figure 8).

Experiment 4

Experiments 1–3 examined effects of statistical density on cat-
egory learning. To summarize, we found that dense categories
were ably learned without supervision, whereas sparse categories
required explicit instruction. This was the case for both children
and adults, and it applied to a variety of different categories:

categories that were defined by individual dimensions (Experi-
ments 1 and 3) or categories defined by relations between dimen-
sions (Experiment 2).

In Experiment 4, we examined the representation of dense and
sparse categories in adults (Experiment 4A) and in children (Ex-
periment 4B). Recall that several outcome contingencies are pos-
sible: Both dense and sparse categories could be represented in a
rule-based manner, both dense and sparse categories could be
represented in a similarity-based manner, or dense and sparse
categories could be represented differently (e.g., the learner might
form similarity-based representations for dense categories and
rule-based representations for sparse categories).

Stimuli were colorful drawings of artificial creatures (similar to
the ones used in Experiments 1 and 2) that varied in their appear-
ance (hereafter, A) and in an arbitrary category-inclusion rule
(hereafter, R) that could be manipulated independent of appear-
ance. The resulting four types of test items were items for which
appearance and rule matched those of the target category (ATRT),
items for which appearance and rule matched those of the con-
trasting category (ACRC), and items for which either appearance
alone or rule alone matched that of the target category (ATRC or
ACRT, respectively). The statistically dense category was defined
by the overall appearance and the arbitrary rule, whereas the
statistically sparse category was defined by the arbitrary rule alone.

As in the previous experiments, the procedure consisted of a
learning phase and an immediate testing phase. However, in con-
trast to the previous experiments, both dense and sparse categories
were acquired under the same learning regime, which included
both explicit instruction and exposure to target items. Therefore, a
difference in performance cannot be attributed to differences in the
two learning procedures. The testing phase consisted of a surprise
recognition task that included the target items (i.e., ATRT) and the
three types of foils (i.e., ACRC, ATRC, and ACRT), none of which
had been presented during training. If participants acquired the
category at all, they should have correctly accepted ATRT items
and correctly rejected ACRC items. Importantly, if they formed a
representation based on the overall appearance, they should have
false-alarmed on ATRC items, but not on ACRT items. If they
formed a rule-based representation, they should have false-alarmed
on ACRT items, but not on ATRC items. These predictions were
tested with adults (Experiment 4A) and children (Experiment 4B).

Table 3
Between-Subject Conditions of Experiment 3 Determined by the
Number of Relevant Dimensions and the Total Number of
Dimensions in a Category

Number of relevant
dimensions

Total number of dimensions

10 7 5 3 1

10 1.00
7 .70 1.00
5 .50 .71 1.00
3 .30 .43 .60 1.00
1 .10 .14 .20 .30 1.00

Note. Values in cells represent the statistical density of a particular
category.

Table 4
Mean Accuracy Scores as a Function of Condition Found in
Experiment 3

Number of relevant
dimensions

Total number of dimensions

10 7 5 3 1

10 .86
7 .59 .94
5 .31 .53 .81
3 .31 .53 .52 .93
1 .19 .22 .44 .41 .92

R2 = 0.8876
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Figure 8. Categorization accuracy predicted by statistical density in
Experiment 3.
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Experiment 4A

Method

Participants. Participants were 26 adults (9 women and 17
men), none of whom participated in any of the previous experi-
ments. They were randomly assigned to one of two conditions
(learning the dense vs. sparse category), with about equal numbers
of participants in each condition. Eight participants were tested and
omitted from the sample because their performance on target items
(ATRT) and contrasting items (ACRC) did not reach criterion (see
Procedure).

Materials. Stimuli were artificial creatures similar to the ones
used in Experiments 1–2. The varying features were the sizes of
tail, wings, and fingers; the shadings of body, antenna, and but-
tons; and the numbers of fingers and buttons. The relation between
the two latter features defined the arbitrary rule: Members of the
target category had either many buttons and many fingers or few
buttons and few fingers. All the other features constituted the
appearance features. Members of the target category had a long
tail, long wings, short fingers, dark antennas, a dark body, and light
buttons (target appearance AT), whereas members of the contrast-
ing category had a short tail, short wings, long fingers, light
antennas, a light body, and dark buttons (contrasting appearance
AC). Table 5 shows how appearance features and rule features
were combined to create the four types of stimuli, and Figure 9
shows examples of each kind of stimulus. As in previous experi-
ments, each appearance feature had two levels to increase variation
between individual items.

Appearance features were probabilistic in each set of foils. For
example, for ATRT foils, only seven out of eight stimuli had a long
tail, whereas the eighth stimulus had a short tail. This ensured that
participants could not simply focus on a single feature to discrim-
inate successfully between target and contrasting items. In con-
trast, the arbitrary rule was fully predictive. If participants simply
focused on the most predictive feature, they should focus on the
rule, and hence, they should false-alarm on ACRT, but not on
ATRC, items.

Design and procedure. The experiment included two between-
subjects conditions that differed in the density of the to-be-learned
category. In the dense category, both appearance and rule were
relevant for category membership, whereas, in the sparse category,
only the inclusion rule was relevant for category membership. The
procedure in these two conditions differed only in the explicit
description of the category’s inclusion rule presented to partici-
pants during training. In the dense-category condition, the descrip-
tion was “Most Ziblets have dark antennas, a dark body with light
buttons, a long tail, and long yellow wings with short aqua fingers.
Also, Ziblets with many aqua fingers on each yellow wing have
many buttons, and Ziblets with few aqua fingers on each yellow
wing have few buttons.” In the sparse-category condition, the
description was “Ziblets with many aqua fingers on each yellow
wing have many buttons, and Ziblets with few aqua fingers on
each yellow wing have few buttons.” In addition to the verbal
description of target items, participants were also presented with
exemplars of the target category (ATRT) during training. These
stimuli were identical for both conditions, so participants could
focus on either appearance or rule features to distinguish between
Ziblets and non-Ziblets.

After the training phase, participants were given a surprise
recognition task: They were asked to distinguish between items
that they had seen during the training and those that were new. The
first set of test items consisted of eight ATRT items and eight
ACRC items presented in a random order. The goal of this first set
was to assess whether participants learned to discriminate target
items from contrasting items. To be included in the study, partic-
ipants had to perform correctly on at least 11 out of 16 trials (above
chance, binomial test, p 
 .06). The second set of test items
consisted of critical lures, with eight ATRC items and eight ACRT

items. The goal of this set was to assess participants’ representa-
tion of a category formed during category learning. Note that
neither type of these stimuli was presented during training and that
false alarms on any type of stimuli would give information about
what was represented of the category of Ziblets.

Table 5
Examples of Stimuli Used in Experiment 4 Presented in Abstract Notation

Feature

ATRT ATRC ACRT ACRC

Example
1

Example
2

Example
1

Example
2

Example
1

Example
2

Example
1

Example
2

Appearance
Size of tail 0 0 0 0 1 1 1 1
Size of wings 0 0 0 0 1 1 1 1
Size of fingers 1 1 1 1 1 0 0 0
Shading of body 0 0 0 0 1 1 1 1
Shading of antennas 0 0 0 0 1 1 1 1
Shading of buttons 1 1 1 1 1 0 0 0

Rule
Number of fingers 0 1 0 1 0 1 0 1
Number of buttons 0 1 1 0 0 1 1 0

Note. There are two examples of each of the four item types. The numbers 0 and 1 refer to the values of the respective dimension (e.g., 0 � short tail,
1 � long tail). ATRT items are referred to as target items, ACRC items are referred to as contrasting items, and ATRC and ACRT items are critical lures.
ATRT � appearance and rule match those of target category; ATRC � appearance alone matches that of target category; ACRT � rule alone matches that
of target category; ACRC � appearance and rule match those of contrasting category.
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Results and Discussion

Across conditions, ATRT items were accurately accepted at M �
0.90, and ACRC items were accurately rejected at M � 0.91 with
no significant difference between the conditions ( ps 
 .22). We
therefore focus on participants’ performance on critical lures.
Figure 10A presents the mean proportion of “yes” responses (i.e.,
false alarms) broken down by the foil type (ATRC vs. ACRT) and
condition (dense vs. sparse). As can be seen in the figure, in the
dense-category condition, participants were more likely to false-
alarm on items that were similar to training items, whereas, in the
sparse-category condition, they were more likely to false-alarm on
items that had the same rule as the training items.

A 2 (category type: dense vs. sparse) � 2 (foil type: ATRC vs.
ACRT) mixed-design ANOVA revealed a significant interac-
tion, F(1, 24) � 18.40, p 	 .001. In particular, participants in
the dense-category condition were more likely to false-alarm on
items that shared the appearance of studied items than on items
that shared the category-inclusion rule, paired-sample t(11) �
2.37, p 	 .05. The opposite was the case for the sparse-category
condition, with participants being more likely to false-alarm on
items that shared the rule of the learned category than on items
that shared its appearance, paired-sample t(13) � 3.97, p 	 .01.
Recall that both pieces of information—appearance and arbi-
trary rule—were available to participants during training, with
the inclusion rule of the category being the only difference
between the conditions. Thus, when presented with the inclu-
sion rule of a sparse category, participants tended to filter out
appearance information presented during training and formed a
rule-based category representation. In contrast, when presented
with the inclusion rule of a dense category, participants were
more likely to focus on appearance, forming a similarity-based
representation. These findings indicate that the distinction be-
tween dense and sparse categories is not limited to learning but
is also evident in how participants represent categories. The
goal of Experiment 4B was to examine whether the same holds
for young children.

Experiment 4B

Method

Participants. Participants were twenty-two 4- and 5-year-olds
(Mage � 59 months, SD � 3.5 months; 12 girls and 10 boys),
randomly assigned to one of the two conditions. Four additional
children were tested and omitted from the sample because their
accuracy on ATRT and ACRC foils was below 0.5.

Materials, design, and procedure. Materials and design were
identical to those used in Experiment 4A, and the cover story
presented to children was identical to that used in Experiment 1B
and 2B.

Results and Discussion

Across conditions, ATRT items were accurately accepted (M �
0.78), and ACRC items were accurately rejected (M � 0.91), with
no significant difference between the conditions ( ps 
 .46). Figure
10B presents children’s mean proportion of “yes” responses (i.e.,
false alarms) on critical lures (ATRC vs. ACRT) as a function of
condition (dense vs. sparse). A 2 (category type: dense vs.
sparse) � 2 (foil type: ATRC vs. ACRT) mixed-design ANOVA
revealed only a significant effect of foil type, F(1, 20) � 103.60,
p 	 .001, with children being more likely to false-alarm on ATRC

foils (M � 0.66) than on ACRT foils (M � 0.29). This finding
indicates that children represented categories by appearance and
not by the rule whether the category was dense or sparse.

One could argue, however, that children represented the appear-
ance of the sparse category because they failed to learn the inclu-
sion rule of the sparse category. In particular, children tested in the
sparse-category condition might have had difficulty with the ver-
bal description of the arbitrary rule RT and therefore might have
focused only the appearance of the items presented to them during
training. To rule out this possibility and to examine children’s
ability to learn the category, we tested a new group of children
(n � 33, mean age � 59.7 months; 16 girls and 17 boys). The same
materials and procedure were used, with the only difference being

Figure 9. Examples of stimuli used in Experiment 4. ATRT � appearance and rule match those of target
category; ATRC � appearance alone matches that of target category; ACRT � rule alone matches that of target
category; ACRC � appearance and rule match those of contrasting category.
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that children were asked to perform a categorization task (i.e., distin-
guish between Ziblets and Flurps), not a recognition task (i.e., distin-
guish between old and new items). Learning of the dense category
would yield acceptance of ATRC, but not ACRT, items as Ziblets,
whereas learning of the sparse category would yield acceptance of
ACRT, but not ATRC, items as Ziblets. This interaction between
category type (dense vs. sparse) and foil type (ATRC vs. ACRT) was
indeed found, F(1, 31) � 13.20, p 	 .01, with children in the
dense-category condition being more likely to categorize ATRC items
than ACRT items as Ziblets (M � 0.64 vs. M � 0.22), paired-sample
t(10) � 3.10, p 	 .05, and children in the sparse-category condition
being more likely to categorize ACRT items than ATRC items as
Ziblets (M � 0.71 vs. M � 0.22), paired-sample t(21) � 16.50, p 	
.01. This finding suggests that children can use the rule of the sparse
category when asked to categorize items even though they represent
the category in terms of its appearance.

Taken together, results of Experiments 4 indicate that adults and
children differ in how statistical density affects category represen-

tation. Adults represent sparse categories in a rule-based manner,
and they represent dense categories in a similarity-based manner.
In contrast, young children represent both dense and sparse cate-
gories in a similarity-based manner. These findings indicate that
the similarity-based representation is a developmental default,
whereas rule-based representations are a product of learning and
development. Overall results of Experiments 4A and 4B present
interesting challenges for theories of categorization to explain the
developmental transition, and they may have implications for
research on memory and memory distortions.

General Discussion

Results of the reported experiments point to important dissoci-
ation between dense and sparse categories with respect both to
category learning and to category representation. In Experiment 1,
the dissociation was found for categories with linearly separable
category structures in children and adults: Although supervision
did not facilitate learning of dense categories, supervision mark-
edly increased learning of sparse categories. Experiment 2 corrob-
orated these findings with nonlinearly separable categories again
in children and adults. Furthermore, Experiment 3 found that
density predicts unsupervised category learning markedly better
than other predictors, such as the number of relevant dimensions or
the total number of dimensions.

In Experiment 4, the dissociation between dense and sparse cate-
gories was tested in terms of category representation after dense and
sparse categories were learned under comparable learning regimes.
Adults were more likely to represent sparse categories in a rule-based
manner, whereas they were more likely to represent dense categories
in a similarity-based (or appearance-based) manner. Specifically,
when categories were dense, adults were likely to false-alarm on items
that shared the target appearance rather than on items that shared the
arbitrary rule of the target, whereas the reverse was the case for sparse
categories. This pattern of responses was not the case for young
children: Unlike adults, children represented dense and sparse cate-
gories on the basis of the category’s similarity. Specifically, they were
more likely to false-alarm on items that shared the target appearance
than on items that shared the arbitrary rule of the target regardless of
category structure. This finding indicates that rule-based representa-
tions of sparse categories found in adults are not a default but are
rather a product of development.

Statistical Density: A Solution to the Learning Paradox?

Results of current research offer a potential solution to the paradox
of category learning described in the introductory section, above.
Recall that although some categories are easily learned without su-
pervision even by young infants, other categories require supervised
effortful learning even in adults. Research presented here suggests that
category density is a candidate solution to the paradox: Whereas
dense categories can be easily acquired without supervision, learning
of sparse categories requires supervision.

Results of Experiment 1C support our hypothesis that learning
of dense categories puts small demands on selective attention
(because most of the information is category relevant) and thus can
be learned without supervision. In particular, when learning dense
categories in Experiment 1C, learners attended to the entire pattern
rather than to a single dimension. In contrast, learning statistically

Figure 10. Mean accuracy scores by item type and category structure in
Experiments 4A and 4B. Error bars represent standard errors of the mean.
FA � false alarms; ATRC � appearance alone matches that of target
category; ACRT � rule alone matches that of target category.
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sparse categories requires the learner to ignore a large amount of
category-irrelevant information while focusing on category-
relevant information. The greater the proportion of the to-be-
ignored information (i.e., the sparser the category), the more
difficult it is to figure out what should be ignored and, as a result,
the more difficult it is to learn the sparse category without super-
vision. Experiments 1B, 2A, and 2B support this contention,
indicating that children and adults could not learn the respective
sparse categories without supervision. Yet even children could
learn the sparse categories when learning was supervised. Taken
together, these findings support the prediction that category struc-
ture interacts with the learning regime.

Study of categorization has primarily relied on supervised category
learning (Love, 2002). Therefore, theories formed on the basis of
evidence from supervised learning may tend to overestimate the
difficulty of learning of denser categories, especially when these
categories are probabilistic. Love (2002) compared acquisition of
Shepard et al.’s (1961) category types across different learning modes
and found that the categories that generated substantial difficulty
under supervised learning were more easily acquired under unsuper-
vised, incidental learning. Similarly, theories relying primarily on
evidence from unsupervised learning (e.g., Whitman & Garner, 1962)
may overestimate the difficulty of learning sparse categories: Acqui-
sition of some sparse categories may be exceedingly difficult (if not
impossible) under an unsupervised learning regime, whereas these
same categories can be readily acquired under supervised learning.

The concept of statistical density also brings a principled solution
to the so-called feature-selection problem. This problem is based on
the idea that many categories have multiple features and feature
relations, with many being irrelevant for category membership. For
example, even though many refrigerators are white, membership in
the category refrigerator is not affected by color. It has been argued
that because category learning requires attention to relevant features
and relations, the learner has to know in advance what the relevant
features are. This means that category learning requires some form of
top-down knowledge (see Murphy & Medin, 1985, for arguments).
The current research suggests that although there might be a problem
of feature selection when categories are sparse, this is not the case for
dense categories. The highly intercorrelated structure of dense cate-
gories renders top-down knowledge unnecessary: Because dense cat-
egories have many redundant features, there is no need to selectively
attend to a particular feature. This could enable even young infants to
effortlessly acquire dense categories. It can also be successfully ex-
ploited by neural network models of conceptual development (e.g.,
Rogers & McClelland, 2004) because even simple networks can
acquire dense categories without top-down knowledge of which fea-
tures are important.

Density and Representation of Categories

It has been long believed that most (if not all) categories are
represented in a similar way (for a review, see Murphy, 2002; E. E.
Smith & Medin, 1981). For example, according to the classical
view, category learning is viewed as a process of discovery of the
necessary and sufficient features, with necessary and sufficient
features being central for category learning and representation
(Bruner et al., 1956; Vygotsky, 1986). Alternatively, it has been
argued that categorization is grounded in perceptual and atten-
tional mechanisms capable of detecting similarities in the input

(e.g., Goldstone, 1994; Hampton, 1998; Kruschke, 1992; Rogers &
McClelland, 2004; Sloutsky & Fisher, 2004; for reviews, see Hahn
& Ramscar, 2001; Rips, 2002; Sloman & Rips, 1998). According
to that account, categories are represented as a central tendency
(Minda & Smith, 2001; Posner & Keele, 1968; Rosch, 1978), as
probabilistic rules (Ashby, 1989), or as sets of encountered exem-
plars (Hintzman, 1986; Kruschke, 1992; Medin & Schaeffer, 1978;
Nosofsky, 1986, 1992).

However, there is a growing body of evidence that not all catego-
ries are the same, and it is possible that each of these theories is
partially correct as they accurately describe representation of different
types of categories. This idea has given rise to a variety of multisys-
tem/multiprocess models that assume a combination of unitary pro-
cesses, some of which are rule-based and some of which are
similarity-based processes (e.g., Ashby et al., 1998; Erickson & Krus-
chke, 1998; Nosofsky et al., 1994; E. E. Smith & Sloman, 1994).

Our results indicate that in adults, dense categories are represented
in a similarity-based manner and sparse categories are represented in
a rule-based manner. These findings are consistent with the multisys-
tem/multiprocess models, although it is conceivable that a single-
process model would also be able to account for these findings. The
developmental differences in category representation found here sug-
gest that similarity-based representation is a developmental default,
whereas rule-based representations are a product of development.
These results support previous developmental findings (e.g., Sloutsky
& Fisher, 2004; see also Sloutsky, 2003, and Sloutsky & Fisher, 2005,
for discussions) while posing an interesting challenge for theories of
categorization: Categorization theories have to account for the devel-
opmental difference in how sparse categories are represented, and
they have to address what underlying processes could explain the
developmental transition.

Statistical Density: Just Another Distinction?

As noted in the introductory section, above, there have been a
number of proposals casting doubt on the assumption that all or
most categories are the same (see Gentner & Kurtz, 2005; Gold-
stone, 1996; E. E. Smith, Patalano, & Jonides, 1998, for reviews).
How then does the concept of statistical density add to these
already existing distinctions?

It is worth noting that statistical density maps well (albeit not
perfectly) onto many of the previously proposed distinctions. In
particular, it maps well onto Rosch’s taxonomic distinction (Rosch
& Mervis, 1975), given that members of basic-level categories
(e.g., bird) have greater statistical density than members of
superordinate-level categories (e.g., animal). Furthermore, it maps
well onto the concrete-versus-abstract distinction given that con-
crete categories (e.g., car) are likely to embody entities with a
higher number of overlapping perceptual features than abstract
categories (e.g., truth). Statistical density also maps well onto the
entity-versus-relational-category distinction and hence onto the
noun-versus-verb distinction (e.g., Gentner, 1981). Entity catego-
ries (e.g., car) are likely to be dense, and relational categories (e.g.,
driving) are likely to be sparse (see Gentner & Kurtz, 2005, for
related arguments). Finally, it maps onto the distinction between
natural and nominal kinds, with natural kinds (e.g., species of
animals) being statistically denser than nominal kinds (e.g., scien-
tific, mathematical, and legal concepts).
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It is possible that the concept of statistical density is a more general
distinction, one that lies at the basis of other distinctions. One impor-
tant advantage of statistical density is that, unlike some of the other
proposed measures, statistical density can be measured independently
(in principle) rather than be inferred from participants’ patterns of
response. It furthermore provides a continuous measure rather than a
mere dichotomy. As such, it makes it possible to capture the graded
nature of differences between categories.

Category Structure and Learning

There are several theoretical models of statistical structure that
predict effects of statistical structure on category learning. In
particular, Garner (1962) argued that learning of a set of stimuli is
a function of feature redundancy within this set. Similarly, Tra-
basso and Bower (1968) argued that the proportion of category-
relevant to category-irrelevant information predicts the efficiency
of category learning. Homa et al. (1979) demonstrated that cate-
gory learning is affected by the structural ratio of a category or
category coherence (see also J. D. Smith & Minda, 2000), a
measure that is based on a summed within- and between-category
distances of items in the psychological space. Corter and Gluck
(1992) introduced the idea of category utility to capture differences
in induction efficiency, with category utility being a function of a
feature’s frequency in a category (or category validity) and the
base rate of the feature in predicting feature induction.

Although some of these models predict effects of category
structure on category learning, none of the models predicts the
interaction of category structure with the learning regime. In
particular, some models (e.g., Garner, 1962; Homa et al., 1979)
can predict better learning of more redundant categories, but they
cannot account for able learning of exceedingly sparse categories.
This is because their models of category structure do not include
selective attention. As a result, these models cannot account for
our findings that even exceedingly sparse categories (such as those
used in Experiment 2) can be learned under supervision.

Other models, such as that of Trabasso and Bower (1968), can
account for successful supervised learning of dense categories
while having difficulty accounting for unsupervised learning of
these categories. This is because these models assume that partic-
ipants sample and test hypotheses about category-relevant dimen-
sions, with both sampling and testing requiring feedback. How-
ever, results of Experiment 1C cast doubt on this assumption:
Participants did not seem to sample individual dimensions when
learning dense categories. More importantly, results of Experi-
ments 1–3 reveal efficient category learning under the feedback-
free unsupervised learning regime. In sum, whereas previous mod-
els of category structure can predict only a main effect of category
structure on learning, the current work suggests an interaction
between category structure and learning regime.

Questions for Future Research

Despite these advances, several questions remain. In particular,
how much statistical density is needed for the category to be learned
without supervision (in trivial time)? Does this amount change in the
course of development? How do different types of supervised learning
affect acquisition of sparse categories? Recall that the current research
examined only one type of supervision, namely, explicit instruction. It

would be important to examine how more subtle types of supervision
(e.g., negative evidence, corrective feedback, or guided comparison)
affect acquisition of dense and sparse categories. These questions
have to be addressed in future studies.

Conclusions

The results of the current research reveal several important regu-
larities about category learning and representation in children and
adults. First, sparse, but not dense, categories require supervised
learning. Second, later in development, sparse categories are repre-
sented in a rule-based manner, whereas dense categories are repre-
sented in a similarity-based manner. Finally, early in development,
both dense and sparse categories are represented in a similarity-based
manner, thus suggesting that similarity-based category representation
is a developmental default. Taken together, these findings provide
important insights about the role of category density in category
learning and category representation across development.
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Appendix A

Estimating Weights of Individual Dimensions and Binary Relations Between Dimensions

To measure the degree to which isolated dimensions differ from
dimension relations in terms of their salience, we asked adults (n �
16) to report the rule of various categories that were created either
on the basis of a single dimension or on the basis of a dyadic
relation. Target items and contrasting items that differed in the
binary dimensions of color, shape, and size were created. Partici-
pants had full view of target items and contrasting items when they

had to generate the rule. The mean proportion of correct responses
was 0.81 for categories created on the basis of a single dimension
and 0.42 for categories created on the basis of a dyadic relation.
These findings suggest the likelihood of detecting a relation is
about a half of that of a dimension, at least under the favorable
conditions under which both target and contrasting items are
presented simultaneously.

Appendix B

Measuring Density for Categories Used in Experiments 1–3

Density across the reported experiments Hdim Hrel Hdim � Hrel

Experiment 1: Dense category (M � 6, O � 15)
Within-category 1 (6*0) 0.5 (15*0) 0
Between-category 1 (6*1) 0.5 (15*2) 21.0
D � 1 � (0/21) � 1.00

Experiment 1: Sparse category (M � 6, O � 15)
Within-category 1 (5*1 � 1*0) 0.5 (10*2 � 5*1) 17.5
Between-category 1 (6*1) 0.5 (15*2) 21.0
D � 1 � (17.5/21) � 0.17

Experiment 2: Dense category (M � 8, O � 28)
Within-category 1 (8*1) 0.5 (28*1) 22.0
Between-category 1 (8*1) 0.5 (28*2) 36.0
D � 1 � (22/36) � 0.39

Experiment 2: Sparse categorya

Within-category 1 (8*1) 0.5 (27*2 � 1*0) 35.0
Between-category 1 (8*1) 0.5 (28*2) 36.0
D � 1 � (35/36) � 0.03

Experiment 3: Category with five relevant dimensions
(M � 10, O � 45)b

Within-category 1 (5*1 � 5*0) 0.5 (10*2 � 25*1 � 10*0) 27.5
Between-category 1 (10*1) 0.5 (45*2) 55.0
D � 1 � (27.5/55) � 0.50

Note. For simplicity, we assume that the attentional weight is 1.0 for a dimension and 0.5 for a relation. These weights are shown in front of the
parentheses. The values in parentheses represent �� ( pj log2 pj) for dimensions and �� pmn log2 pmn for relations, whereas values in italics represent �pl

log2 pj for dimensions and �pmn log2 pmn for relations. M � total number of varying dimensions; O � total number of dyadic relations between two
dimensions; Hdim and Hrel � entropy due to dimensions and due to relations, respectively; D � statistical density.
a Calculations pertain to the sparse category used in the follow-up experiment of Experiment 2A.
b Variation in creatures’ shoes is ignored because of zero entropy for this dimension.
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Density across the reported experiments Hdim Hrel Hdim + Hrel

Experiment 1: Dense category (M = 6, O = 15)

0.5 (15*0) 0

D = 1 - (0/21) = 1.00
Experiment 1: Sparse category (M = 6, O = 15)

1 (5*1 + 1*0) 0.5 (10*2 + 5*1)

D = 1 - (17.5/21) = 0.17
Experiment 2: Dense category (M = 8, O = 28)

D = 1 - (22/36) = 0.39
Experiment 2: Sparse category superscript a

0.5 (27*2 + 1*0)

D = 1 - (35/36) = 0.03

(M = 10, O = 45) superscript b
1 (5*1 + 5*0) 0.5 (10*2 + 25*1 + 10*0)

D = 1 - (27.5/55) = 0.50


	Kloos_Sloutsky_2008a
	What’sBehindDifferentKindsofKinds:EffectsofStatisticalDensityonLearningandRepresentationofCategories
	TheParadoxofCategoryLearning
	StatisticalDensity
	CategoryDensityandCategoryLearning
	CategoryDensityandCategoryRepresentation
	OverviewofCurrentExperiments
	Experiment1
	Experiment1A
	Method
	Participants.
	Materialsanddesign.

	ResultsandDiscussion

	Experiment1B
	Method
	Participants.
	Materials,design,andprocedure.

	ResultsandDiscussion

	Experiment1C
	Method
	Participants.
	Materials,design,andprocedure.

	ResultsandDiscussion

	Experiment2
	Experiment2A
	Method
	Participants.
	Materialsanddesign.

	ResultsandDiscussion

	Experiment2B
	Method
	ResultsandDiscussion
	Materials,design,andprocedure.


	Experiment3
	Method
	Participants.
	Materialsanddesign.
	Procedure.

	ResultsandDiscussion

	Experiment4
	Experiment4A
	Method
	Participants.
	Materials.
	Designandprocedure.

	ResultsandDiscussion

	Experiment4B
	Method
	Participants.
	Materials,design,andprocedure.

	ResultsandDiscussion

	GeneralDiscussion
	StatisticalDensity:ASolutiontotheLearningParadox?
	DensityandRepresentationofCategories
	StatisticalDensity:JustAnotherDistinction?
	CategoryStructureandLearning
	QuestionsforFutureResearch
	Conclusions

	References



