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Abstract. In this essay, we explain time estimation on the basis of principles of 
self-organization. Timing behavior can be seen as an outcome of the coupling 
and coordination across physiological events, overt behavior, and task demands. 
Such coupling reveals itself in scaling relations known as fractal patterns. The 
self-organization hypothesis posits a coherent relation between frequency and 
amplitude of change, as a single coordinated unity, that possess fractal features. 
Empirical data lend support of this hypothesis, initiating a discussion on how 
fractal properties of time estimation can be altered by the interplay of voluntary 
and involuntary control of behavior.  
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1   Introduction 

Timing is a central feature of behavior, whether the behavior pertains to physiological 
events such as brain activity, heartbeat, or breathing; overt motor behavior such as 
walking or dancing; or cognitive behaviors such reading, speaking, interacting 
socially, or participating in a laboratory task. In all these examples, the body finds a 
proper rhythm with surprising ease to ensure adaptive functioning (cf. for social 
coordination) [1-3]. What makes it possible that the activities of the body are so 
precisely orchestrated over time?  

The question of timing has traditionally motivated a search for internal clocks – 
rhythmic structures of some sort that could supply timing information to human 
physiology and behavior. This approach to the many different timing concerns of the 
mind and body proposes a hierarchy of clock times ranging from circadian time, one 
day to the next, to the rapidly changing millisecond timescales of speech, movement 
coordination, and brain activity. Each timescale has been thought to be represented by 
its own clock network of brain structures, distributed across the brain [4-5].  

The hypothesis of internal clocks has some drawbacks however. For example, the 
results of neuroimaging studies have failed to converge on a set of distinct timing 
networks that could correspond to the hierarchy of internal clocks. Instead, it appears 
as though the same brain networks are reused in a multitude of unrelated functions – 
rather than being dedicated in a modular fashion to timing functions (or to any other 
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mental functions, for that matter). Consequently, Anderson [6] has called for 
alternative hypotheses to make sense of neural reuse, which appears to be the basis for 
all cognitive functions. 

In this essay, we describe such an alternative – one that is based on the idea of self-
organization. Self-organization of a system’s behavior takes place without a central 
executive authority or isolated causal timing structures. Instead local interactions 
among the components of a system yield the global pattern of the system’s behavior. 
Examples of such self-organization come from a variety of domains in human 
behavior, including motor coordination [7], decision making [8], and brain activation 
[9]. For example, evidence from EEG studies suggests that the brain self-organizes 
global patterns of activity on the fly –– even coming up with different functional 
organizations to suite the requirements of specific contexts [7, 10-13]. Similarly, 
networks of motor neurons and inter-neurons that produce rhythmic timing functions, 
so-called central pattern generators, were found to self-organize into context-
dependent structures [14-16]. Previously inhibitory connections are reused as 
excitatory connections, new neurons that were not part of the network previously can 
be incorporated, or separate networks become fused into a new central pattern 
generator with changed timing pattern [17]. The inherent flexibility of the network 
structure originates in temporary synergies among the elements of the network that 
assemble to meet the demands of the immediate context [18-20]. 

Our goal in this essay is to explain behavioral phenomena of time estimation on the 
basis of these principles of self-organization. In doing so, we look at one particular 
task, one in which the participant first listens to a metronome beat marking the passing 
of repeatedly identical time intervals. The task is then to reproduce the duration of the 
time interval between metronome beats, repeatedly, after the metronome is turned off. 
This is a classic time-estimation task (cf. [5]) that has been used in several variations. 
For example, sometimes the participant controls the pace of responding, pressing a 
response key as each estimated interval passes. And sometimes a prompt appears 
(marking the beginning of the interval) and the participant responds when the 
estimated interval passes, after which another prompt will appear, and so on. What do 
data obtained from these kinds of tasks reveal about the kinds of processes that could 
give rise to time estimation? 

The phenomena that are revealed in time estimation data are generic patterns of 
local changes that emerge across successive time-estimation trials [8, 21-24]. Figure 1 
illustrates how such patterns are visualized in a spectral plot (following the 
prescriptions for spectral analysis of Holden, [25]): The raw data (a series of 
successive time estimates; shown at the top right of the figure) are decomposed by a 
Fourier transformation into sine waves (illustrated by examples on the left side of the 
Fig. 1). Slow changes in the data series are simulated by the low-frequency sine 
waves and fast changes are simulated by high-frequency waves. Similarly, large 
changes are simulated by high-amplitude sine waves, and small changes are simulated 
by low-amplitude sine waves. The ordered pairs of frequency and power (amplitude 
squared) for each of the obtained sine waves are then plotted on log/log scales (shown 
at the bottom right of the Fig. 1). The remarkable phenomenon is that the paired 
amplitudes and frequencies of the simulated changes turn out to be proportional, 
aligning themselves together along a regression line, also known as scaling relation. 

 



198 R.D. Castillo, G. Van

Fig. 1. One person’s time es
particular amplitude and frequ
is plotted as a function of its a
a spectral plot (bottom right). T

1.1   Fractal Variation in T

Why does the lawful scalin
in time estimation? Some s
universal feature of huma
spurious feature of behavio
human behavior. Or else, th
reveal of the essential natur
proponents of a self-orga
relation as a fractal pattern
fractal time.  

Fractal patterns are self-
at all scales of observation.
state of a system at one po
next point in time. The fun
among the component pro
feedback loops among the 
compete to determine the ne

n Orden, and H. Kloos 

stimation data (top right), decomponsed into sign waves o
uency (examples of which are shown on the left). Each sign w
amplitude (power) and frequency, in log-log coordinates, yield
The slope of the regression line reflects the scaling exponent α

Time Estimation 

ng relation between frequency and size of variation app
cientists entertain a hypothesis that the scaling relation 

an performance [8, 23, 26-28]. If so, then it either i
or revealing little or nothing about the essential nature
he scaling relation is a deeply rooted phenomenon that m
re of human behavior. The latter possibility is assumed

anization hypothesis, which views the universal scal
n across time, a scaling relation that is sometimes cal

-similar structures that exhibit the same statistical featu
 They are simulated using iterative functions, such that 
int in time serves as input to the state of the system at 
ction connecting one state to the next reflects the coupl

ocesses, which is accomplished in positive and negat
processes. This allows processes to cooperate as well

ext state of the system. 

 

of a 
wave 
ding 
α.  

pear 
is a 
is a 
e of 
may 
d by 
ling 
lled 

ures 
the 
the 

ling 
tive 
l as 



 The Embodiment of Time Estimation 199 

The scaling relation illustrated in Fig. 1, aligning amplitude (power) and frequency 
of change, is a common identifier of fractal structure. Fractal structure suggests a 
coherence across scales, which in turn implies a coupling among the processes of the 
mind, brain, and body, across all the scales of the mind, brain, and body. Coupling 
allows continuous updating of each process by every other process, ensuring that each 
process informs the dynamics of every other process. Appropriately conceived, it 
provides a basis for the alignment of frequency and amplitude of change in the scaling 
relation [26, 28-30]. 

Applied to time estimation (as well as the observed timing of physiology and 
behavior), timing intervals of timing behavior can be seen as the outcomes of the 
coupling and coordination of the body. The self-organization of coordination itself is 
the paramount activity. Time estimation is simply a product of that activity, not the 
other way around. This view allows us to dispense with the anti-realist assumption 
that space and time constitute fundamental dimensions of human embodiment or 
phenomenology. Instead embodied time is a performance, physiological and 
behavioral events are primary, while their timing reflects the coordination across the 
sequential orders of events (cf., [31, 32]). 

Of course, one could be skeptical of the self-organization hypothesis. The scaling 
relation might be an idiosyncratic feature of behavior; or it might be a simple aggregate 
of ordinary mechanisms that happen to change on different timescales. Alternatively, 
the scaling relation might be equated with one or more specific mechanisms, elicited 
by the particular task environment, in line with the conventional idea of distinct mental 
functions [33-36]. For example, the high-frequency range of the spectral plot might 
reflect a motor component, while the low-frequency range might reflect a conceivably 
cognitive timing-function underlying time estimates. Finally, the scaling relation could 
reflect a spectrum of distinct internal clock frequencies that accidentally align their 
amplitudes [37].  

These contrasting viewpoints differ from our viewpoint in terms of their predictions 
about the coherence of the apparent scaling relation. They predict that the scaling 
relation comprises an independent process or is composed of independent processes. 
Thus the right kind of manipulation could possibly dissect a scaling relation into 
distinct components, with different frequencies and amplitudes of change. The self-
organization hypothesis, on the other hand, predicts a coherent relation between 
frequency and amplitude of change, which means that it will change in unity, as a rigid 
line that changes in slope. Holden and collaborators tested this prediction by injecting 
random white noise into the experimental protocol of time estimation and manipulating 
its amplitude [38]. Findings show that the injected low-amplitude noise changed the 
slope of a spectral plot toward whiter noise, but without splitting the spectral plot along 
lines of frequency or amplitude. Similarly, the injected high-amplitude noise changed 
the slope toward whiter noise (much more than before), but again without splitting the 
spectral plot. In both cases, spectral slopes changed equivalently across the spectrum of 
amplitudes, as a coherent relation between frequency and amplitude (cf. [39-40]). 
These findings undermine the idea of causally independent processes within the scaling 
relation. Instead they suggest that timing behavior results from the coupling and 
coordination of all the components of body and mind [26, 41]. 
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1.2   The Meaning of Spectral Slopes 

So far we have ignored an important aspect of spectral plots: the slope of the regression 
line between the amplitude, S (f), and frequency of change, f. The negative slope of the 
regression line, indicated as – α, is used to estimate a scaling exponent α, such that: S 
(f) = 1/f α = f –α. In the data set shown in Fig. 1, the obtained scaling exponent is α ≈ 
0.86, a value close to α = 1.0. This value (and values near to α = 1.0) is explicitly 
predicted by a core feature of the self-organization: self-organized criticality [28]. The 
value α = 1.0 represents the ideal scaling relation of fractal time, predicted to appear 
near criticality [42, 43]. So-called critical states are tipping points at which complex 
systems spontaneously reorganize, consistent with the neural reuse hypothesis and 
observed spontaneous reorganization of the central nervous system [7]. Indeed, skilled 
motor performance will converge on the scaling relation of α = 1 over extended or 
developmental time (e.g., for Fitts task performance: [44]; for walking: [45]).  

Time estimation data often reveal near pristine examples of fractal time [26]. 
Likewise, time estimation performance appears to converge on the scaling relation α 
= 1 across development [46]. The task was identical to the generic time-estimation 
task: after the metronome was switched off, children between 4 and 12 years of age 
pressed a button repeatedly to indicate when the designated time interval had passed. 
Data were subjected to analyses like that portrayed in Fig. 1, yielding a reliable 
developmental trend. Younger children produced patterns more like overly random 
white noise, while older children and adults produced patterns more like fractal time 
with α = 1. Younger children might lack capacities to sufficiently control the degrees 
of freedom afforded by the unusual task. With development, they might better 
coordinate their bodies with an idiosyncratic task, and they might better sustain the 
intentions that follow from experimental instructions.  

Despite findings of fractal time, note that the scaling relation of α = 1 is not equally 
present in every time estimation performance (or, for that matter, in other task 
performances that reveal scaling relations). Different task conditions can change the 
pattern of variation across time estimation data, usually to become more like a random 
pattern of white noise. For example, the fractal parameter of the scaling relation is 
close to zero when the metronome is left on during testing trials – but not when or 
when participants tap in a syncopated rhythm, between the beats of a metronome [47]. 
Similarly, the fractal parameter is close to zero when participants are provided with 
feedback on every time-estimation trial [48]. What does the change in spectral slope 
reveal about the system that gives rise to the observed performance? 

Figure 2 shows idealized data patterns and spectral plots that define the range of 
scaling relations discovered using different tasks and task conditions. The range runs 
from random white noise with α = 0 to brown noise with α = 2 at least or higher. We 
argue that the range of scaling relations can often be understood as a trade-off between 
voluntary and involuntary control [49]. To explain, we discuss the nature of control in 
more detail below (see also [28, 50]). 
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         Variation in Human Performance  ୴ୣ୰ ୖୟ୬ୢ୭୫୴ୣ୰ ୖୣ୳୪ୟ୰ ൌ ୍୬୴୭୪୳୬୲ୟ୰୷ େ୭୬୲୰୭୪୭୪୳୬୲ୟ୰୷ େ୭୬୲୰୭୪ .  (1)

More formally, voluntary and involuntary control can be reframed with respect to the 
timescales of observation. Voluntary control brings temporary constraints into and out 
of existence as task performance requires. These constraints tighten or loosen the 
coupling between task and participant in vigilance, poise, mental set, anticipation, and 
so on. Such waxing and waning sources of voluntary control unfold more slowly than 
the trial kinematics of measured behavior. That is, constraints due to voluntary control 
change more slowly than the trial performances that are controlled. These sources of 
constraints, changing more slowly than the pace of measurement, amplify slow 
frequency variation in performance to resemble brown noise. In other words, voluntary 
control exaggerates over regular, slower oscillations supplying higher amplitude, more 
slowly changing variation to the data. High-amplitude slow changes are the basis for 
change in the direction of brown noise with α = 2 in the spectral portrait.  

Involuntary control, on the other hand, concerns all other sources of constraints 
apart from voluntary control. Changes in the difficulty of a task or task demands, the 
knowledge or skill of a participant, or across the participant’s development are all 
changes in involuntary control. Involuntary sources of constraint may affect all 
timescales of constraint. Sources of involuntary control that change on timescales 
faster than (or as fast as) the measurement will perturb performance unsystematically, 
changing the pattern of variation to resemble white noise. In contrast, sources of 
voluntary control that change on slower time scales than the time scale of the 
measurement will change the pattern of variation to resemble brown noise.  

Taken together, these predictions give a good account of the observed changes in 
time estimation data. For instance, consider the baseline to be the fractal time obtained 
when participants listen to the metronome beat until the metronome is turned off, and 
then produce the remembered time interval. An increase in involuntary control can be 
enacted by leaving the metronome on, eliminating the need to remember the time 
interval, and ceding this source of control to the task metronome. Indeed, leaving the 
metronome on, as an enhanced source of involuntary control, yields the expected 
change in variation toward overly random white noise [47]. Anecdotally, we have also 
observed skilled drummers who cede control to their automatic skill set, producing 
white noise in the metronome-off condition. 

Now taking the metronome-on condition as a baseline, an increase in voluntary 
control can be necessitated by another change in the task instructions. Instead of 
instructions to produce intervals in synch with the metronome, the participant is 
instructed to produce syncopated intervals that begin and end between the beats of the 
metronome. Compared to the in-synch condition, the more difficult syncopated 
intervals require a concentrated voluntary effort to sustain accurate performance. The 
enhanced voluntary control moves the pattern of time estimate variation back away 
from a resemblance to white noise and α = 0 toward brown noise with α = 2 [47]. 

Finally, consider the change in control that comes from the presence or absence of 
trial feedback. Feedback perturbs time estimation data, trial to trial, resulting in an 
unsystematic source of perturbations with respect to the behavioral measures of tapping. 
In contrast, feedback is a source of slow changes with respect to more rapidly changing 
brain activity. Slowly changing constraints on brain dynamics originate in the voluntary 
use of feedback to constrain and improve an upcoming performance. In other words, it 
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is the relative timescales of the measurement that determines whether trial-to-trial 
feedback moves variation in data toward white noise or brown noise. Feedback in time 
estimation fits these predictions. When the measurement pertains to tapping, trial 
feedback is a source of involuntary control, which in turn perturbs the pattern of 
variation in the direction of white noise [48]. On the other hand, when the measurement 
pertains to rapidly changing brain dynamics, slow trial feedback moves the variation in 
measurements of brain dynamics in the direction of brown noise [56, 57]. 

2   Conclusions 

Our goal was to address the issue of timing under the framework of self-organization. 
Under this framework, performance – in this case proper timing – does not require 
separate causal structures. No internal clock needs to be postulated to explain the 
intricate and apparently effortless timing performances that humans display. Self-
organization postulates instead that higher-order structures arise from the interplay 
among a multitude of component processes that interact as a balance of competing 
and cooperating tendencies. Timing performance is a product of such an interaction. 

Evidence for our claims comes from the persistent coherence between the ordered 
pairs of amplitude (power) and frequency of sine waves that simulate variation in 
performance. Whether the task involves tapping out a learned rhythm, or syncopated 
tapping between the beats of a metronome, spectral analyses reveal a characteristic 
pattern: Rather than arbitrary pairings of possible amplitudes and frequencies, 
systematic changes are apparent. A scaling relation changing in unity speaks to the 
interdependence of the component processes of the system. Whether a process changes 
on a faster or slower time scale, it is coordinated with other processes, which self-
organize human performance in task specific and participant specific ways. Timing 
then is a result of such self-organization embodied in the interaction of processes at all 
the scales of the body and brain.  
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