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In this paper, we argue that beliefs share common properties with the self-sustaining
networks of complex systems. Matching experiences are said to couple with each other
into a mutually reinforcing network. The goal of the current paper is to spell out and
develop these ideas, using our understanding of ecosystems as a guide. In Part 1 of
the paper, we provide theoretical considerations relevant to this new conceptualization
of beliefs, including the theoretical overlap between energy and meaning. In Part
2, we discuss the implications of this new conceptualization on our understanding
of belief emergence and belief change. Finally, in Part 3, we provide an analytical
mapping between beliefs and the self-sustaining networks of ecosystems, namely by
applying to behavioral data a measure developed for ecosystem networks. Specifically,
average accuracies were subjected to analyses of uncertainty (H) and average mutual
information. The ratio between these two values yields degree of order, a measure of
how organized the self-sustained network is. Degree of order was tracked over time
and compared to the amount of explained variance returned by a categorical non-
linear principal components analysis. Finding high correspondence between the two
measures of order, together with the theoretical groundwork discussed in Parts 1 and
2, lends preliminary validity to our theory that beliefs have important similarities to the
structural characteristics of self-sustaining networks.

Keywords: information theory, average mutual information, uncertainty, degree of order, predictive learning

INTRODUCTION

Which object will get to the bottom of a water tank the fastest? When presented with this question,
one might want to make a wild guess, independently of any guesses made before. More likely
though, one will employ a specific belief, one that ties together previous experiences about sinking
objects, to allow for systematic predictions. One might predict, for example, that the heavier object
will sink faster, independently of its size, shape, shading, or texture. Such beliefs are necessary for
adaptive functioning: they guide our attention to certain aspects of the context, and they allow us
to anticipate the future. However, our understanding of the context in which beliefs emerge and
change remains incomplete. For example, people have everyday experiences with water and objects
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sinking in it. Why, then, do we still have mistaken beliefs about
sinking objects, often ignoring the relevant feature of material
density when making predictions?

The goal of the current paper is to offer a new way of
conceptualizing beliefs, including mistaken beliefs, one that could
shed light on both their emergence and their stability over time.
The specific argument is that beliefs are structured and organized
by means of a self-sustaining network similar to that which
characterizes many complex systems, including ecosystems. The
components of this network are individual experiences, similar
enough to become coupled with each other. It is through this
coupling that the experiences becomemutually reinforcing. Here,
we seek to spell out the explanatorymechanisms of such coupling,
using our understanding of ecosystems as a guide.

Our paper is organized as follows: in Part 1, we describe the
analogy between beliefs and ecosystems, as a first illustration
of a belief as a self-sustaining network. In Part 2, we then
present the implications of this view, particularly as they relate
to the emergence and change of beliefs. Finally, in Part 3,
we provide a proof of concept for this proposal, namely by
comparing two measures of order: one that was derived from
complex ecosystem networks, and one that was derived from a
traditional principal component analysis (PCA) that is used to
identify and characterize underlying constructs from a covariance
matrix.

Beliefs as Self-Sustaining Networks of
Experiences
Beliefs vary a great deal from each other. They range from
trivial to fundamental in their scope, and they differ in the
number of unique experiences they pertain to. Beliefs might
be as narrow as the conviction that a reader understands
these words, or they might be part of a larger system of
beliefs, say that humans engage in meaningful activities to
further their long-term goals. For simplicity, we will focus on
single beliefs only, rather than groups of beliefs. However, it
is likely that the same claims hold for different or nested
scales of organization, whether we are referring to mundane
details of everyday life or to fundamental principles of
order.

Here, we propose that a belief is a network of perceptual
experiences that have something in common. To explain,
consider a context in which one has to predict the sinking
behavior of objects. There are numerous features that
vary in each display, including shading, spatial position,
temperature, haptic sensations, odor, acoustic properties, as
well as variation in heaviness, size, and shape of the objects.
It is unlikely that we attend to all of these features equally.
Instead, some features will have attentional priority, based
on idiosyncratic factors of salience and perceived relevance.
For example, the experience of heaviness, more so than the
experience of size or shape, is likely to win out in salience,
perhaps because heaviness, like sinking behavior, has a haptic
component of downward force (cf. Kloos and Amazeen,
2002). Our argument is that similar experiences will enter
a form of coupling, a coordination in which they mutually

reinforce each other1. This coordination is the start of a
belief.

The metaphor of beliefs as networks of experiences is
based on ideas derived from our understanding of complex
systems, particularly ecosystems. To illustrate, consider a
simplified ecosystem of the following components: organic
material, bacteria, detritivores (e.g., worms), and carnivores
(see Figure 1). Organic material provides the nutrition for
bacteria and detritivores. Bacteria feed detritivores, which in
turn feed carnivores. And both detritivores and carnivores turn
into organic material, thus starting the cycle all over again.
The individual species connect to each other through energy
exchange, where one part of the network provides food for
another part (and vice versa). The resulting network is self-
sustaining, meaning that it can survive disruptions in external
energy supply, for example during a drought (cf. Ulanowicz,
1986).

Just as components of an ecosystem are linked to each other on
the basis of energy transfer, we claim that individual experiences
are linked to each other on the basis of a transfer of meaning.
Here, meaning is defined as a perceivable change in a feature that
matters to the organism (i.e., relevant feature fluctuation). The
fluctuation could be a change in light, sound, heat, or any other
physical, chemical, or haptic property. For the feature change to
be considered meaningful, two requirements have to be met: (1)
the feature change needs to be perceivable, and (2) it has to have
relevance in the context of the task. As such, meaning and energy
share an important characteristic: they both can do work. While
energy causes a change in general, meaning causes a specific kind
of change: an action of the agent who seeks to solve a problem.

To develop the analogy between energy and meaning further,
note that the energy in an ecosystem includes various forms of
kinetic energy (e.g., heat energy, light energy) as well as potential
energy (e.g., calories stored in individual organisms). Similarly,

1We propose that the coupling happens on the basis of a match between
experiences. It is clear that a match alone cannot explain the emergence of the
coupling; additional forces are needed to explain the basis for the network. We
will return to this issue in Part 2.

FIGURE 1 | Schema of an idealized ecosystem exchanging energy in a
self-sustaining network.
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meaning can be available in ongoing experience (e.g., moment-
to-moment fluctuations in structured light as one prepares an
action); and it can be available in past experiences that are
part of the network. When the relevant feature fluctuation in
an experience matches that of a previous experience, the two
get coupled. This is analogous to the coupling that takes place
between two species that match in energy supply and demand,
such as between detritivores and carnivores.

In an ecosystem, the potential energy stored in a component
of the network (e.g., in a worm) gets transferred to another
component (e.g., carnivore). While the transfer can be bi-
directional, such as in the case of bacteria and organic material,
there is a clear direction. A directional transfer of meaning, in
contrast, might be rare. It might be restricted to cases that involve
an inference or deduction from one experience to the next (e.g.,
hypothesis testing). In all other cases, including when making
predictions about sinking objects, the transfer of meaning is likely
to be bidirectional, not based on explicit inferences or deductions,
but on the basis of a match. When two experiences have a feature
variation in common (e.g., heaviness, from the example above),
they get coupled on the basis of that commonality, yielding a kind
of transfer that is analogous to synchrony (cf. Strogatz, 2003).

There are several interrelated concepts relevant to self-
sustaining networks that could be of use to understanding
the nature of beliefs. The first one pertains to autocatalysis, a
specific form of positive feedback in which the effect of every
successive connection in the network is strengthened over time
(Kauffman, 1995). To use the ecosystem example again, positive
feedback loops come in the form of energy flow, say from organic
material to bacteria, to worms, and back to organic material. The
resulting outcome is the recycling of energy, enough for creatures
to sustain themselves despite interruptions in external energy
supply. In the case of beliefs, meaning is the energy of the system,
and the positive feedback loops come in the form of directed
coupling of similar experiences. They bring about an increased
similarity among experiences, consistent with the idea of a silent
re-description of experiences, a sort of growth that takes place
even in the absence of a task (Karmiloff-Smith, 1992; Spencer
et al., 2009; see also Kounios and Beeman, 2014 for a similar claim
on a neurological level).

The second concept of interest pertains to circular causality,
the idea that components of the network, which give rise to
the higher-order configuration, are constrained by the higher-
order configuration itself (cf. e.g., Turvey, 1990, 2007; Kelso,
1995; Turvey and Carello, 1996; Smith, 2005; Laland et al., 2012).
Species that are compatible in energy use seek to get coupled into
a network that then affects the nature of the energy use among
those species. Applied to beliefs, sufficiently similar experiences
get coupled into a network that then affects the similarity among
past experiences. It is this property of mutually reinforcing
experiences that constrains what a person will remember about a
prior experience. Whatever feature becomes coupled to another
will now increase in salience during a subsequent event, by virtue
of having been included in the self-sustaining network.

The third concept of interest pertains to centripetality, the idea
that a network will attract resources into its circuit to sustain itself
(Ulanowicz, 1986; Kauffman, 1995). That is to say, the network

will draw in energy resources and eliminate competition over
time. If two species seek to enter the same network, for example,
the ecosystem will favor the one that provides the most efficient
energy use. This is where the network obtains its character of
agency, its inner life, driven by a force to sustain itself and
grow. Applied to beliefs, centripetality is the force that draws in
experiences that strengthen the whole, amplifying the relevance
of confirming evidence and rendering conflicting evidence as
irrelevant. It is by this feature that the system can stay stable even
as individual experiences might get replaced.

Taken together, the principles of autocatalysis, circular
causality, and centripetality give rise to a self-sustaining network,
one that can sustain its order despite external fluctuations (cf.
Juarrero, 1999). These principles can explain relevant aspects of
beliefs, including their storage, retrieval, and apparent agency.
For example, storage comes for free in a system that features
autocatalytic processes. These are the processes that allow the
system to amplify itself, without requiring uninterrupted external
support. Furthermore, coupling can explain retrieval: when
feature variability that are coupled with a component of belief
are present in a task context, the belief will be retrieved.
Centripetality bestows the network with agency, explaining why
a prior belief affects new learning in such a way that it sustains
itself. Finally, the idea of circular causality explains the dialectic
character of beliefs to be tied to both new task contexts and to
already existing experiences. What are the implications of this
view for our understanding of how beliefs emerge and change?

Implications for Explaining Emergence
and Change
Questions about belief emergence and change have fueled
theoretical advances in how to conceptualize beliefs. To
what extent does our network theory of beliefs add to this
conversation? In what follows, we seek to address this question,
looking first at emergence, and then at change.

What Leads to the Emergence of Beliefs?
In recent years, emergence has begun to surface as an important
topic of study (e.g., Oyama, 2000; Johnson, 2002; Deacon, 2011).
Even so, the explanatory process that yields emergence is still
rather nebulous. How could something entirely novel emerge,
spontaneously, without being reduced to a flow chart of what
came first, second, third, and so on? It is no surprise, then, that
the idea of emergence has not yet fully shed its mystical character
in the study of beliefs. Ohlsson (2011, p. 294) captures it as such:
“The main triggering condition of the formation of a new belief is
that new information knocks on the doors of perception and asks
to be let in.” Even if we were to be able to define ‘information’
in this context, it would still leave the question open as to how it
‘gets in.’ The link we seek to draw between beliefs and ecosystems
offers a theory of emergence that might dispel some of this
mystery.

Note that the difficulty with the concept of emergence is
not restricted to mental processes. In fact, it is seemingly in
conflict with the universal tendency of global systems to move
toward less structure, rather than more (cf. Gershenson and
Fernandez, 2012). To address this conflict, a suggestion has been
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made that local order emerges for the purpose of moving the
larger system toward equilibrium, faster than the system would
move toward equilibrium otherwise (Odum, 1988; Swenson and
Turvey, 1991). Put differently, the local self-organization is said to
emerge precisely for the purpose of dissipating the disequilibrium
that exists in the larger system.

To illustrate, consider the self-organization of convection cells
in a fluid that is being heated from below (Pearson, 1958). The
heat discrepancy between the bottom and the top of the fluid
constitutes a disequilibrium that needs to be dissipated. If this
heat gradient is low (i.e., heat levels below and above the fluid are
similar), water molecules will move randomly, without giving rise
to ordered convections. It is a certain heat gradient that gives rise
to ordered convection cells. Thus, the emergence of structure is
tied to the dissipation of a gradient, such that the law of maximal
disorder is obeyed (i.e., the second law of thermodynamics).

The same concept can be applied to the emergence of life:
in a simplified scenario, plants dissipate the gradient of light
(among many other gradients), herbivores dissipate the gradient
of energy stored in plants, and carnivores dissipate the gradient of
energy stored in herbivores (Swenson and Turvey, 1991). Here,
the relevant gradient refers to the off-and-on availability of food
for the plants and animals that make up the ecosystem. The
ecosystem dissipates this gradient through the coordination of
energy exchange between species, and the network stores its own
energy, in effect balancing out the energy gradient.

Our claim is that the same principle – the dissipation of
a gradient – explains the emergence of beliefs. Rather than
caloric energy, the relevant gradient pertains to meaning: the
structured variability that makes it possible to complete a task.
To illustrate this, consider the simple task of a predator catching
its prey. The spatial relation between predator and prey defines
meaning for the predator, an invariant property that needs to
be established stably before the predator can catch its prey. If
the predator gets distracted, say by a loud noise, the invariant
property will be lost, at least momentarily. It is this interruption
that creates the gradient of meaning. To retain meaning in the
face of interruption (i.e., in the face of the meaning gradient),
the network of coupled experiences comes into play. Thus, the
intermittent nature of meaning availability results in a stable
organization. It is the network of coupled experiences that
bridges the meaning gradient, in effect dissipating the gradient.
Put differently, it is the off-and-on availability of meaningful
variability that brings about beliefs.

There is evidence that noise can lead to the emergence of
a new organization in a cognitive system (Kitajo et al., 2003).
Most recently, this principle has been demonstrated in a task in
which participants had to guess an outcome after learning about
the premises (Stephen et al., 2009a,b; Dixon et al., 2010). There
were two strategies that could be used to solve this problem: one
required a one-to-one coupling with the display (participants had
to consider the behavior of each gear in a series of interlocked
gears); the other one allowed participants to go above moment-
to-moment details of the task and solve the problem by applying
a generalized rule. Importantly, participants were faster to adopt
this generalized rule when the display was moved randomly, in
effect disrupting a one-to-one coupling with it.

Taken together, there are several conditions that need to be
met before a belief emerges. First, there needs to be some relevant
feature variability, variability that affords a successful completion
of the task. Second, there has to be sufficient capability to couple
with this variability. The coupling gives rise to an experience,
a momentary snapshot of the event. Third, there needs to be
a certain amount of noise to create a gradient in meaningful
variability. This can come in the form of either structured or
unstructured variability, not too much and not too little, to push
for local coupling among experiences. Finally, experiences need
to be similar enough to couple with each other. This coupling,
the emergent belief unifying individual experiences, will amplify
the similarity among experiences and filter out the noise. As such,
it bridges the gradient in meaning.

What Does it Take to Change Beliefs?
So far, we have discussed beliefs under the premise that they
are essential for adaptive functioning. They make prediction
possible, they constrain the field of attention, and they bridge the
interruption of relevant feature variation. There is another part to
beliefs, however. Beliefs can be overly simplistic, incomplete, or
misleading (for a review, see Vosniadou, 2008). And in this case,
when there is a clash between reality and one’s belief, adaptive
behavior can be hampered: predictions could be mistaken,
attention could be focused on the wrong feature variation, and the
feature variation that matters could go unnoticed. That is when
the content of a belief needs to change. To what extent is this issue
of mistaken beliefs in line with our network theory of beliefs?

Network theory indeed anticipates the presence of mistaken
beliefs, precisely because of the attributes that are characteristic
of self-sustaining networks. Individual experiences that give
rise to beliefs are necessarily local, based on the presence of
a feature variation that is salient in the moment in which it
is perceived. Momentary salience does not necessarily mean
long-term relevance, and the local focus does not ensure global
veridicality. And yet, this initial experience sets in motion the
emergence of a belief, following a bottom–up process that is
biased toward replicating itself. It is this causal circularity that
interferes with a rational reality check. And it is the autocatalysis
that constrains subsequent experiences to amplify the ones
that came before, without the luxury of a birds-eye view of
correctness. It is no surprise, then, that mistaken beliefs emerge
in domains in which local phenomenological experiences conflict
with global scientific understanding (e.g., physical science, earth
science).

Network theory also anticipates the fact that a change in belief
can be challenging at times. To review, there is ample research
suggesting that conflicting evidence is sometimes ignored (Ditto
and Lopez, 1992; Munro, 2010); that conflicting evidence yields
only superficial adjustments to a mistaken belief, leaving the main
parts of the belief intact (e.g., Vosniadou and Brewer, 1992); and
that confirming evidence is actively sought out (better known as
a confirmation bias, e.g., Wason, 1960; Nickerson, 1998). If we
consider beliefs as self-sustaining networks, built on the basis of
local similarities, all of these findings follow naturally.

For example, given that a belief network serves the purpose
of bridging interruptions in one kind of feature fluctuation,
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fluctuations that do not support the network must be ignored
by design. In fact, such a latter feature fluctuation might in fact
strengthen the existing belief (also known as the ‘backfire effect,’
cf. Lord et al., 1979; Nyhan and Reifler, 2010). This is because
it could contribute to the size of the gradient that the network
seeks to bridge. The tendency of a network to benefit from
perturbation, known as antifragility, has also been documented
in networks more generally (Taleb, 2012). This underscores the
difficulty that is built into changing a belief network.

Given the forces of centripetality, networks do not change
passively and incrementally (e.g., with each new experience).
Instead, experiences are sought out actively, to maximally support
the experiences at are already part of the network. Thus, the
confirmation bias is not an abnormality of an otherwise rational
mind. Instead, it is a direct result of the central properties of self-
sustaining networks. Interestingly, the agency of networks is only
in the service of the whole. Thus, local components can be added,
removed, or changed as long as the whole is preserved. We have
indeed found a certain degree of arbitrariness in local aspects of a
belief, as long as the whole is preserved (cf. Kloos and VanOrden,
2012).

How, then, can the change of a mistaken belief be
accomplished? Merely confronting mistaken beliefs with
conflicting evidence is likely to fail, given the self-sustaining
character of the network. For a change to take place in a
network, the change must be beneficial to the overall network
(cf. Ulanowicz, 1986, 1998, 2000). In the case of beliefs, such
benefit is in the increased efficiency of coupled experiences. In
other words, before they can be changed, beliefs have to lose
their advantage faster than they can replenish internally, as part
of the network (see also Ohlsson, 2011). Such changes would
correspond to a non-linear or ‘catastrophic’ phase transition
(bifurcation) analogous to when convection roles emerge a
critical energy gradient.

In sum, our network theory of beliefs provides the first
coherent framework of belief change, anticipating spontaneous,
sudden, non-linear changes in belief structures, as well as both
the presence of mistaken beliefs and the difficulty in changing
mistaken beliefs. This approach to beliefs is different from
existing theories of beliefs that have an empiricist or nativist
bent: it does not put causal power exclusively in contextual
factors, nor does it require structures to exist a priori. As such, it
provides the perfect launching ground toward a comprehensive
understanding of how to change beliefs. It suggests that a
change in beliefs requires an integrated approach that seeks
to build a new network, one that can grow strong enough
to eventually feature a more efficient coupling than the old
network. Thus, the network theory promises to substantially
advance our understanding of belief change. To what extent
are these theoretical analogies between ecosystems and beliefs
substantiated analytically?

Degree of Order in Self-Sustaining
Networks vs. Mental Systems
Based on the conceptual understanding of ecosystems as self-
sustaining networks, several measures have been derived to

capture relevant properties of such systems, including degree
of order, robustness, stability, and ascendancy (e.g., Ulanowicz,
1986, 2011; Jørgensen and Ulanowicz, 2009). Could the same
measures capture relevant properties of belief data? The
argument is that a valid extension of a network-based measure,
should we find support for it, could also support the extension
of conceptual claims. In other words, if a measure derived
from the idea of self-sustaining networks manages to capture
relevant features of beliefs, then we conclude that beliefs, too, can
be conceptualized as self-sustaining networks. This is arguably
an indirect way of seeking support for a conceptual leap.
Nevertheless, it is a first step toward a conceptualization of beliefs
as networks, one that would justify the development of more
direct measures down the line. In what follows we focus on a
measure of order.

How to Conceptualize Order in a Self-sustaining
Network?
To address this question, consider the schematic networks
represented in Figure 2. The networks differ in the way
in which their components are connected to each other: at
one extreme (Figure 2A), each component is linked with all
other components, yielding high redundancy; and at the other
extreme (Figure 2C), each component is linked with only one
component, yielding low redundancy. The middle figure shows a
configuration in which there is some redundancy in component
connections while there are also some missing connections.
Importantly, the network is most ordered when redundancy of
connections is lowest, and when constraints on connections are
highest.

Applied to ecosystems, where components are individual
species and the connection is energy flow, Figure 2A shows
a system in which energy is flowing in all directions. A good
example is the ecosystem of a rainforest climate, where there
is high redundancy in how energy is being exchanged between
species. For such a system to sustain itself, a lot of external
energy is necessary, as there is very little recycling of energy. In
contrast, Figure 2C shows an ecosystem that is highly constrained
in energy flow, one that recycles sufficient energy to survive
strong fluctuations in external energy (e.g., a mountain climate
ecosystem). In this latter system, the redundancy is very low,

FIGURE 2 | Schematic of three idealized self-sustaining networks to
illustrate the different degrees to which energy/meaning is coupled
among components. (A) Highly redundant system (yielding disorder).
(C) Highly efficient system (yielding order). (B) System with intermediate
recycling efficiency (adapted from Ulanowicz, 2000).
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making the system vulnerable to changes in individual species.
The ecosystem shown in Figure 2B is intermediate in redundancy
of energy flow, allowing for some recycling of energy as well
as some flexibility, to accommodate disruptions in individual
species.

Applied to a belief, where meaning is being entrained,
components are individual experiences, and a connection is
the coupling among similarities, Figure 2A shows a case in
which various similarities are coupled. Experience A might be
coupled with Experience B on one feature, and Experience B
might be coupled with Experience A on another feature. The
result is an unorganized network of experiences, where various
similarities are each amplified a little. Such a network needs
continuous external support on what feature to pay attention
to, as the network does not provide sufficient guidance. In
contrast, Figure 2C shows a belief in which the coupling is
highly constrained. Experience A is coupled with Experience
B on one feature, and the same feature is coupled between
Experiences B and C. This case is highly ordered, the coupling
of similarities being highly constrained. The belief shown in
Figure 2B is intermediate in the degree to which similarity
between experiences is constrained.

Using these insights, the degree of order can be calculated
using information theory (cf. Ulanowicz, 1986, 1998, 2000,
2009; Szyrmer and Ulanowicz, 1987; Lerner, 2006). Specifically,
there are two terms of interest, that of uncertainty (H) and
that of average mutual information (AMI). Uncertainty H is
a measure that depicts the amount of “unknown” that exists
in a distribution of scores (Shannon and Weaver, 1949)2. The
uncertainty of an outcome can be estimated when a specific cue
has previously occurred. If all possible states of a system have the
same probability, then the system has the maximum uncertainty.
If the outcome can adopt only one state, then the system has the
minimum uncertainty. Mathematically, the equation is:

H = −K
∑

pi log2 pi, (1)

where pi is the probability of a score (and K is a constant set
to 1). If the probabilities are evenly distributed across the possible
scores, uncertainty is maximal.

Average mutual information is conceptualized as a structure
or a quantifiable pattern that leads to a reduction in uncertainty.
It measures the level of articulation among the components,
based on distribution of scores (Castillo and Kloos, 2013). Put
differently, AMI reflects the decrease in uncertainty that results
from observation of past outcomes of similar or associated events.
Mathematically, AMI is a logarithmic correlation between two
distributions that can be estimated by using the conditional
probability of aj given bi. Specifically, its formula is:

AMI = k
∑

i,j
p(ai, bj) log

[
p(bi

∣∣ aj)
p(bi)

]

, (2)

where k is a constant set to 1, p(aj, bi) is the joint probability of
events in two separate distributions, p(bi) is the probability of

2This measure is also referred to as entropy in the literature (Ulanowicz, 1986).

the variable bi, and p(bi|aj) is the conditional probability of bi
given aj.

Finally, a compound measure between AMI and H reflects
the degree of order (α), an indicator of the constraints on
the connections between components. The degree of order is
a measure of organization and structure. In formal terms, the
degree of order can be represented as the ratio between AMI and
its respective uncertainty H:

α = AMI/H (3)

If degree of order is close to zero in an ecosystem, the recycled
energy is too low to deal with perturbations in external energy
flow. This system is unlikely to possess sufficient cohesion to
maintain its integrity and identity over time. It fits the network
shown in Figure 2A, where there is no unique energy flow. In this
hypothetical case, the network has highest levels of uncertainty
and lowest levels of AMI. In contrast, if α is high in an ecosystem,
close to 1, the system recycles energy efficiently, but is vulnerable
if a chain gets disrupted or a component gets perturbed. It fits
the network shown in Figure 2C, where it is possible to precisely
predict the direction of flow. Here, the network has lowest levels
of uncertainty and highest levels of AMI. Figure 2B represents
a network in which degree of order adopts intermediate values,
given that the flow has some uncertainty as well as some
constraints.

Do Macroscopic Measures of Order Map onto the
Order in Predictions?
In what follows, we address this question using accuracy
data from a group of participants who were asked to make
guesses about how transparent containers behave in water3.
Reasoning about sinking objects is typically attributed to
incorrect beliefs (e.g., Inhelder and Piaget, 1958; Smith et al.,
1985; Kohn, 1993; Kloos and Somerville, 2001; Kloos, 2007).
Thus, this domain lends itself to studying the degree of
order in predictions, especially in the context of corrective
feedback.

What follows is a brief outline of the experiment (see
Appendix A for a full description of the method). The specific
task was to predict which of two objects would sink either
faster (sink-faster condition) or slower (sink-slower condition).
Objects were transparent containers of different sizes that could
hold a certain number of aluminum disks. They were paired
up such that it was sometimes the heavier and sometimes
the lighter object that sank faster. For example, in the
small-wins trial type, both objects had equal mass and the
smaller one sank faster. Figure 3 shows the five possible trial
types.

There were a total of 360 trials, broken up into eight
segments of 45 trials each. The first two segments (Pre1 and
Pre2), as well as the last two segments (Post1 and Post2),
were simple prediction trials. In contrast, the middle four
segments (T1, T2, T3, and T4) contained feedback, provided
after each prediction. Figure 4 shows a schematic of the

3All experimental methods reported here were approved by the university’s IRB to
ensure that they are in line with ethical guidelines for research with human subjects.
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FIGURE 3 | Example pairs of objects, one for each different trial type. The object that sinks faster in the pair is marked with a star. (A) Small-wins pair; (B)
heavy-wins pair; (C) big/heavy-wins pair; (D) small/heavy-wins pair; (E) small/light-wins pair.

FIGURE 4 | Schematic representation of prediction trials. (A) Prediction trial without feedback. (B) With feedback (a picture is shown of the objects after being
dropped in a tank of water).

procedure during each kind of trial. We anticipated that the
small changes in instructions (between groups) and the presence
of feedback (within groups) would generate a different pattern
of performance, based on existing findings (Waldmann, 2001;
cf. Fernbach et al., 2010; Öllinger et al., 2012; Kloos and
Sloutsky, 2013). If the proposed measure of degree of order
is reliable, it should track these changes, independently of the
different patterns that the specific instructions and feedback
elicit.

Group data (separated by condition, type of trial and segment)
were analyzed in three different ways. First, we analyzed the
proportion of correct predictions, to shed light on participants’
understanding of the task, the effect of the training, and whether
the specific instruction had an effect on performance. Second, we
estimated the degree of uncertainty in different types of trials,
the AMI between these groups, and the resulting degree of order
across segments. Finally, the same data set was subjected to a
non-linear categorical principal components analysis (CATPCA).
This type of analysis differs from standard PCA in that the
relations between variables are assumed to be non-linear (as

well as linear), rather than exclusively linear4. CATPCA (i.e., has
been applied to behavioral data previously, and therefore could
serve as a reasonable comparison to our new approach (Linting
et al., 2007). The main analysis then pertains to a comparison
between degree of order and the proportion of variance in
the data explained by the first dimension extracted through
CATPCA.

Note that all of these analyses are based on group data, which
is nothing unusual for a discussion of accuracy. It nevertheless
carries an important caveat, especially in the realm of the study of
beliefs. This is because a participant’s performance on one trial
is not independent of the participant’s performance on a next

4In linear PCS all variables are scaled at the interval or ratio numeric level
of measurement. In non-linear PCA, by constrast, such assumptions are not
necessary, because correlations are not computed between the observed variables
but between the quantified variables. Indeed, the correlation matrix in non-linear
PCA is not fixed; it is dependent on the type of quantification, the level of analysis
being chosen for each of the variables. Thus the non-linear PCA output is not
obtained from the correlation matrix. It is iteratively calculated from the raw data,
using the optimal scaling procedure to quantify the variables according to their
analysis level.
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trial. Trial-by-trial performance is instead connected by a belief,
a belief that might differ for different participants. Collapsing
across participants masks these details, and thus cannot speak
to the question of how beliefs emerge or change for individual
participants. We use group data nevertheless because it allows
us to investigate whether the measure of order developed for
ecosystems (degree of order) tracks the changes in order observed
in a group of participants who made predictions about sinking
objects (proportion of explained variance).

Accuracy
In the sink-faster condition (Figure 5A), there was a significant
linear increase of accuracy across segments, F(7,168) = 10.62,
p < 0.001, η2

p = 0.31, with lower accuracy during the first
two segments (MPre1 = 0.82, MPre2 = 0.82) than during the
subsequent segments (MT1 = 0.89, MT2 = 0.91, MT3 = 0.91,
MT4 = 0.90, MPost1 = 0.91, MPost2 = 0.91), ps < 0.01.
A significant interaction between trial type and segment,
F(28,672) = 14.05, p < 0.01, η2

p = 0.37, shows that this linear
increase in accuracy was present for the small-wins and the
small/light-wins trial types, ps < 0.01, but not for the other trial

FIGURE 5 | Average proportion of correct responses, by trial type and
segment, in the sink-faster (A) and the sink-slower condition (B). Error
bars represent the standard errors.

types. In fact, there was a linear decrease in accuracy for the
big/heavy-wins trial type, p < 0.01.

In the sink-slower condition (Figure 5B), there was also
a significant linear increase of accuracy across experimental
segments, F(7,182) = 18.84, p < 0.01, η2

p = 0.42, with
lower accuracy during the first two segments (MPre1 = 0.74,
MPre2 = 0.75) than during the subsequent segments (MT1 = 0.88,
MT2 = 0.91, MT3 = 0.92, MT4 = 0.91, MPost1 = 0.91,
MPost2 = 0.92), ps < 0.01. As in the other condition, we again
found a significant interaction between trial type and segment,
F(28,728) = 20.39, p < 0.001, η2

p = 0.44, showing that the
linear increase in accuracy was present for the small-wins and
the small/light-wins trial types, ps < 0.01, but not for the other
trial types. Again, there was a linear decrease in accuracy for the
big/heavy-wins trial type, p < 0.01.

The two conditions were compared in a mixed-design
ANOVA (trial type vs. condition vs. segment). While there
was no difference between condition, F(1,50) = 1.48, p = 0.23

FIGURE 6 | Uncertainty H of each trial type, separated by segment and
trial type, in the sink-faster (A) and the sink-slower condition (B).
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FIGURE 7 | Average mutual information (A) and degree of order (B) obtained for each trial-type pair, separated by segment and condition [the
diagonal in (A) shows H of each trial type]. The shading represents a quartile of degree of order (white: lowest level; blue: highest level). S, small-wins pair; H,
heavy-wins pair; BH, big/heavy-wins pair; SH, small/heavy-wins pair; SL, small/light-wins pair.

(Msink−faster = 0.88 vs. Msink−slower = 0.87), there was
a marginally significant interaction between trial type and
condition, F(4,200) = 2.08, p = 0.08, η2

p = 0.04. This
interaction was driven by the big/heavy-wins and small/light-
wins trial types, visible most clearly after the initial two segments
without feedback, at the onset of feedback trials and afterward.
Specifically, while participants in the sink-faster condition
performed similarly high in the two trial types once feedback
was provided, p > 0.99, participants in the sink-slower condition
performed better in the small/light-wins than the big/heavy-
wins trials, ps < 0.05. Thus, they were more likely to pick the
bigger/heavier object as the slower sinker.

Taken together, participants responded correctly when the
heavier object sank fastest. When the smaller object sank faster,
response accuracy was close to chance or even below chance.
Despite feedback, overall accuracy did not reach ceiling (i.e.,
predicting all trials correctly in the later segments). In fact, as
accuracy increased on one trial type, it decreased on another
trial type. Even so, participants modified their performance
under feedback, and variations in the wording (faster vs. slower)
generated different performances.

Measures derived from ecosystem analyses
As mentioned above, the three measures of interest here pertain
to uncertainty, AMI, and degree of order. Findings for each of
these measures are presented in turn.

Uncertainty (H) was estimated for each segment, across
participants. The first step was to transform the raw data into
quartiles, based on the distribution of scores of a trial type in
each segment of a condition. Specifically, a participant’s average
accuracy in a trial type was replaced by one of four values,
representing its quartile in the distribution of scores. This was
necessary to make data comparable across different trials. The
quartile data were then used to create contingency tables for each
pair of trial types of each segment in a condition. Finally, we
converted each contingency table into a joint-probability table,
by dividing each entry by the total number of participants (see
Appendix B for an illustrative example calculation).

The second step was to use the marginal probabilities of the
joint-probability matrix to estimate uncertainty for a specific
segment and trial type (following Eq. 2; see Appendix B
for the necessary steps in these calculations). The resulting
uncertainty for each trial type is shown in Figure 6, separated
by segment and condition. Note that uncertainty was highest
for the small/light-wins trial type, almost reaching Hmax = 2
in some segments. The trial type big/heavy-wins also moved
toward increased uncertainty over time. While it was relatively
low at first, it came close to maximal uncertainty during
feedback trials and then stayed there. On the other end of
the spectrum, the trial types small/heavy-wins and heavy-
wins had low uncertainty at the beginning, with little change
across segments. Uncertainty of the small-wins trial type started
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FIGURE 8 | Fluctuations of degree of order and % of explained
variance of the first dimension by segment in the sink-faster (A) and
the sink-slower condition (B).

out relatively high, but then dropped once feedback was
given.

Average mutual information captures the amount of reduced
uncertainty in the responses on one trial type that results
from information about responses to another trial type. To
calculate the AMI for each directional pair of trial types,
we first estimated the conditional probability p(bi|aj) that
a participant’s performance in one trial type would be in
one quartile (aj) given that the participant’s performance
on anther trial type is in a certain quartile (bi). We
then calculated the AMI for each directional pair of trial
types, following Eq. 2. Appendix B shows a step-by-step
description of the estimation of AMI between two trial
types.

The resulting AMIs for each directional pair are shown
in Figure 7A. Note that AMI tended to be highest for

the link between the small/light-wins and small-wins trial
types, suggesting that performance in these two trial types
was interrelated. Similarly, there was a connection between
the trial types small/light-wins and big/heavy-wins. Thus,
predictions on trials in which the smaller and lighter object
sank fastest tended to be coupled with predictions on trials
in which either the smaller object sank fastest or the bigger
and heavier object sank fastest. This pattern of performance
cannot be explained by mere fluctuations in accuracy, nor
can it be explained by mere fluctuations in uncertainty.
Thus, fluctuations in AMI capture a unique aspect of the
data.

The degree of order (α) is estimated as the ratio between AMI
and its respective trial type uncertainty H (see Eq. 3), capturing
the articulation between pairs of trial types. Figure 7B shows the
results, with the absolute size of α being represented as quartile
(dark blue is indicative of the highest degree of order). Note that
the values below and above the diagonal are different because
AMI values (of pairs of trial types) are divided by the H of
different trial types. Results show a strong fluctuation in degree
of order for different pairs of trial types, as well as a strong
fluctuation across segments. This latter fluctuation is captured in
Figure 8, displaying the average degree of order obtained for a
given segment (see dashed line). Specifically, there was a spike in
degree of order at the onset of the feedback trials in the sink-faster
condition (Figure 8A), and a spike in degree of order at the end
of the feedback trials in the sink-slower condition (Figure 8B).

Importantly, these spikes in degree of order could not
have been anticipated by the fluctuation in accuracy. Thus,
our analysis of order in adults’ predictions is by no means
redundant with what we could have gotten from an analysis of
accuracy. It provides a novel way of capturing relevant patterns in
performance, one that might shed light on underlying processes
beyond what accuracy measures could not. Drawing again on the
analogy of ecosystems, nobody would be surprised to learn that
self-sustaining networks are not necessarily accurate. To quote
Lorenz (1963/2002, p. 260), “To the biologist (. . .) it is in no
way surprising to find (. . .) some details [that] are unnecessary
or even detrimental to survival.” Self-sustaining networks need
not to be adaptive in the way veridical systems are (cf. Kelty-
Stephen and Eddy, 2015). The fluctuations of order found in
adults’ predictions, orthogonal to accuracy, underscore this point.

Categorical principal component analysis
The CATPCA extracts dimensions from the correlation pattern
among trial types to represent the degree to which they are
associated with each other (Linting et al., 2007). In the case in
which trial types are uncorrelated, the number of dimensions
returned by the CATPCA is equal to the number of trial types.
In contrast, if trial types have shared variability, then the number
of dimensions decreases. The smaller number of dimensions
indicates that the network components are coupled, and they
have a common structure that is articulating their functionality.
The eigenvalue of a dimension, λ, represents the amount of
variability in the correlation pattern that can be explained by that
dimension. Figure 8 shows the two measures, α and λ, side by
side, as they change over time.
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Relation between degree of order and proportion of explained
variance
To what extent does the degree of order track the proportion
of explained variance? To answer this question, we calculated
the correlation between the average degree of order and the
eigenvalue of the first dimension extracted by CATPCA. The
fluctuations, including the spikes, match with the variations
observed in the proportion of explained variance for the first
dimension. A positive correlation between these two measures
was reliably detected (sink-faster, r = 0.85, p= 0.007; sink-slower,
r = 0.80, p = 0.017). This convergent finding is a criterion of
validation, because two structural measures of order, applied at
different times during the same learning process, capture ordered
patterns of decision.

These findings show that the measure developed to capture
network stability closely tracked the proportion of explained
variance obtained by CATPCA. Thus, we found evidence that the
measure used in information theory to capture network order is
strongly correlated with fluctuations in traditional measures of
order. Our findings lend support to the idea that beliefs could be
understood as self-sustaining networks of experiences.

CONCLUSION

In this paper, we have presented an approach to beliefs that is
motivated by insights about the organization of ecosystems. We
define beliefs in terms of self-sustaining networks, characterized
by processes of autocatalysis, circular causality, and centripetality.
In support of these claims, we found in a behavioral dataset that
the changes in degree of order were captured in CATPCA: an
increase in degree of order was significantly correlated with an
increase in the proportion of explained variance. The particular
measure applied here, degree of order, allows us to leave behind
questions about the exact content of stable structure. This index
incorporates the informational measures ofH andAMI that focus
on the system organization, not the details of the components that
make it up. Thus, degree of order makes it possible to incorporate
the heterogeneity of mental structures into explanations of
cognitive phenomena without trapping us in a discussion of what
exactly it is that humans know or do not know.

Our network approach to beliefs departs significantly from the
prevalent conception of beliefs as a collection of propositions.
At its center lies the idea that individual experiences become
coupled with each other, in a way that is both constraining
and strengthening. Thus, beliefs – like ecosystems – are neither
a direct reflection of an invariant property in the actor-
environment relation, nor are they completely separate from
it. Order comes instead from a coordination that amplifies
itself under the right conditions. This conceptualization throws
overboard the reliance on reductionism, and it allows for

moment-to-moment dynamics, non-linear changes, and the
emergence of something entirely new.

There are several important advantages to the network view of
beliefs. First, they fit the data on beliefs: that they often emerge
spontaneously, that they affect subsequent experiences, and that
they are difficult to change. Second, they fit within the larger
theory of how self-organizing processes give rise to stability, thus
paving the way for progress that is not tied to the specific material
content of a system. And finally, our approach circumvents the
dead-end that has plagued approaches that seek linear causality
and reductionist explanations.

It remains to be seen whether the principles of self-sustaining
networks apply to scales of order that are above and below that
of a single belief. For example, beliefs that are organized into
mental models or theories (e.g., Johnson-Laird, 1983) might be
networks themselves, with individual beliefs serving as nested
components in the organization (i.e., systems-of-systems of self-
sustaining networks). And on the other end of the hierarchy
of order, it is possible that even a single experience – a
representation – is a network as well (cf. Byrge et al., 2014).
If so, then the idea of representations is misleading: our mind
does not represent the environment any more than the flow of
energy in an ecosystem represents the distribution of energy in
the environment.
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