

Learning & Development in Middle-School Children

Heidi Kloos UC Department of Psychology

http://www.uc.edu/ccrl/Events.html

Age is not a good indicator of much!

- a child's knowledge
- a child's development stage
- a child's learning ability
- a child's potential

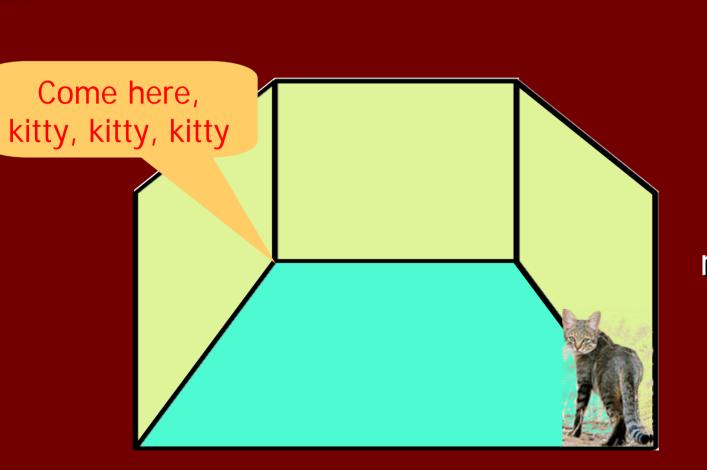
Principles of learning apply to all ages!

- preschooler through adulthood
- toddlers
- infants

Lesson 1

Age is not a good indicator of much! How is this possible?

Differences between age groups are easy to find
 Memory
 Memory
 Motor Coordination
 Planning
 Social Competence
 Language
 Problem-solving


Lesson 1

Age is not a good indicator of much!
because performance is <u>not</u> indicative of

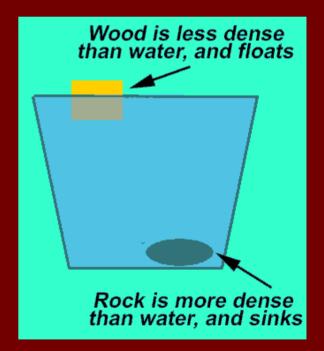
- a child's knowledge
- a child's development stage
- a child's learning ability
- a child's potential

performance measures <u>constraints in the immediate context</u>

Constraints

Performance is always a function of the existent constraints – never a mere reflection of a competence.


If constraints matter...


- Performance should be highly dependent on the immediate task context.
 - The same child should be perform differently under different constraints.
 - As constraints loosen, older children should perform worse than younger children
 - No stable competence (or incompetence) at a particular age group

1. Concept of Density

(how 'packed' or 'crowded' material is)

Children tend to have difficulty with this concept

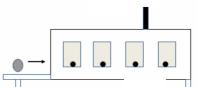
- even 12-year-olds perform incorrectly in this task
- even 5-year-olds perform correctly in some context

2. Concept of Solidity

(solid objects cannot pass through each other)

4-month-olds recognize violations of solidity

Spelke, E. S., Breinlinger, K., Macomber, J., & Jacobson, K. (1992). Origins of knowledge. *Psychological Review, 99,* 605–632



But even 2-year-olds fail to understand solidity in a search task

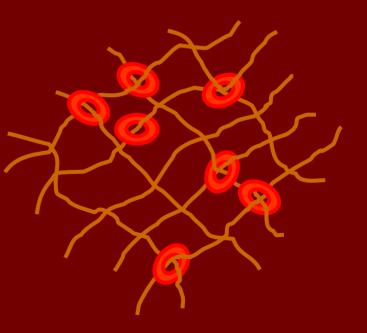
Berthier, N. E., DeBlois, S., Poirier, C. R., Novak, M. A., & Clifton, R. K. (2000). Where's the ball? Two- and three-year-olds reason about unseen events. *Developmental Psychology*, *36*, 394–401.

In Sum – Lesson 1

- Age is not a good predictor of performance
- no stable competence (or incompetence) at a particular age
- The same child performs differently under different constraints.

Why does Lesson 1 matter?

- Don't attribute differences in performance to difference in age-related limits in
 - brain,
 - memory
 - planning
 - abstract thinking, etc.


– Age differences are easy to find, but meaningless

Lesson 2

Principles of learning are the same across development

What is learning?

- Remembering of facts vs.
- Integration of information 'coordination'
- Learning always consists of integration!

Can babies integrate?

Evidence with newborns: number concept

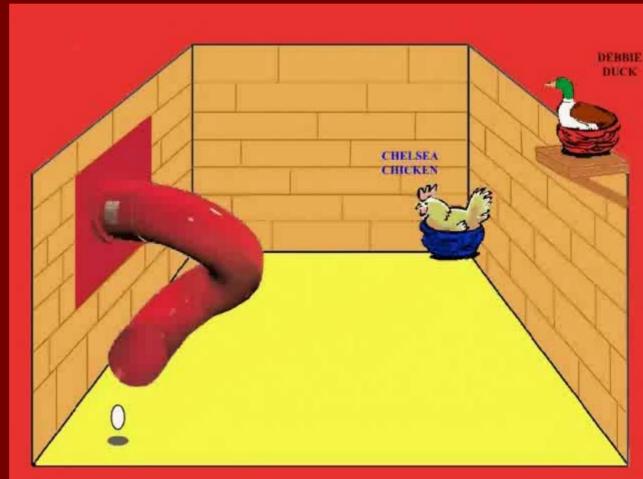
Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates, *Child Development, 54*(3), 695-701
Evidence from infants: language learning

pel-wadim-puser-votpel-wadim-puser-toodpel-loga-taspu-votpel-loga-taspu-tooddak-deecha-coomo-tooddak-deecha-coomo-votdak-wadim-hiftam-tooddak-wadim-hiftam-vot

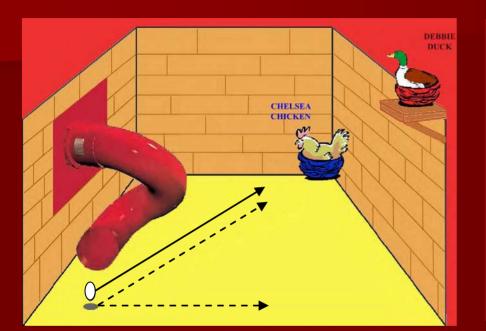
Gomez, R. (2002). Variability and Detection of invariant structure, *Psychological Science*, 13(5), 431-436

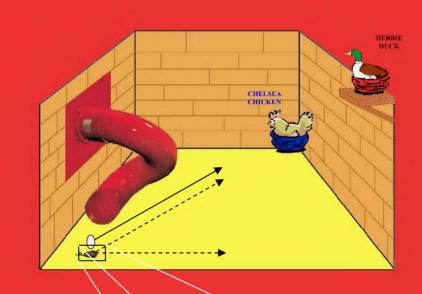
Then what develops?

'Distance' between what can be integrated


– Spatial distance

close


0


🛛 far

- Conceptual distance
 Similar
 - different
 O

Types of Trials

conceptual distance

spatial distance

shadow moves parallel to egg shadow moves away from egg mouse moves parallel to the egg mouse moves away from the egg

In Sum – Lesson 2

- Principles of learning are the same across age
- Even infants integrate pieces of information
- Younger children integrate across 'shorter distances' than older children

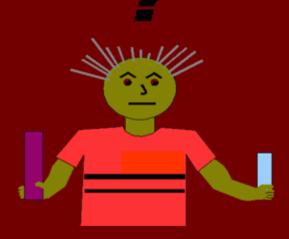
Why does Lesson 2 matter?
 Children of all ages are ready to learn
 But the right constraints need to be provided

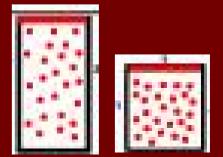
How to provide the right constraints?

Hands-on explorations

Lesson 1 + 2: Not necessarily!

 If appropriate constraints are missing, children will incorrectly integrate pieces of information

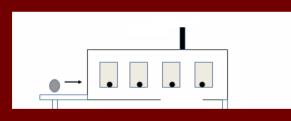

 They will form misconceptions


1. Concept of Density

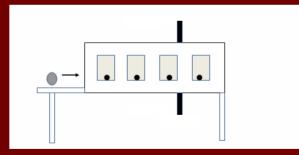
(how 'packed' or 'crowded' material is)

density	=	mass
		volume

- Focus on mass and volume
- VS.
- Focus on density directly



2. Concept of Solidity


(solid objects cannot pass through each other)

VS.

search task:

Focus on the barrier Focus on link between barrier and door

Focus on link between barrier and ball

In Sum: Lesson 1 + 2

Learning principles stay the same across age

Children always attempt to integrate pieces of information into congruent wholes

But:

appropriate integration requires appropriate constraints

Hand-on explorations are fun, but they must be structured and guided appropriately

Conclusions

- Children are ready for learning
 - They can coordinate facts already as newborns
- Successful integration requires the right constraints in the environment
- Without them, children come up with an alternative integration, often incorrect
- How to provide the right constraints:
 - Be clear about the concepts that need to be conveyed
 - Simplify integration by making links obvious
 - models
 - schematics
 - causal mechanisms

Adventure • Conservation • Education

AT UNION TERMINA

Thank You

MUSEUM CENTER WWW.uc.edu/ccrl