In this exam \(\mathbb{R} \) denotes the field of all real numbers; \(\mathbb{R}^d \) is the \(d \)-dimensional Euclidean space with the usual norm \(\|x\| = \left(\sum_{k=1}^{d} x_k^2 \right)^{1/2} \); \(C[0,1] \) is the space of continuous functions on the interval \([0,1]\). Proofs or counterexamples are required for all problems.

1. If \(f \) is continuous on \([a,b]\), if \(a < c < d < b \), and \(M = f(c) + f(d) \), prove that there exists a number \(\xi \) between \(a \) and \(b \) such that \(M = 2f(\xi) \).

2. Prove that if a set \(C \) in \(\mathbb{R}^d \) is connected and a point \(x \in \mathbb{R}^d \) is a cluster point of \(C \), then the set \(C \cup \{x\} \) is connected.

3. Prove the Monotone Convergence Theorem for Sequences as stated below. Note: For the “only if” part, do not simply state that a convergent sequence is bounded; prove it.

 Let \(\{x_n\} \) be a monotone increasing sequence of real numbers. Then \(\{x_n\} \) is convergent if and only if it is bounded.

4. Prove or give a counterexample: Let \(f \) and \(g \) be two functions on the interval \([-1,1]\). If the product \(fg \) is Riemann integrable on \([-1,1]\), then at least one of \(f \) and \(g \) must be Riemann integrable on \([-1,1]\). Carefully support all your statements.

5. Let \(X = \{ f \in C[0,1] : f(0) = 0 \} \). You may assume that \(X \) is a vector space over \(\mathbb{R} \). For each \(f \in X \), let \((Tf)(x) = \int_0^x f(y) \, dy \), \(x \in [0,1] \).
 (a) Show that \(T \) is a linear map from \(X \) to itself.
 (b) Show that \(T \) is injective.
 (c) Show that \(T \) is not surjective.

6. Let \(V \) be a vector space, and \(T : V \to V \) a linear map. Suppose there exist linearly independent vectors \(v_1, v_2, v_3 \) such that \(Tv_1 = v_2, \; Tv_2 = v_3, \; \) and \(Tv_3 = v_2 \). Show that \(\lambda = 0, \; \lambda = 1, \) and \(\lambda = -1 \) are eigenvalues of \(T \). (Hint: consider appropriate linear combinations of \(v_1, v_2, \) and \(v_3 \) as possible eigenvectors.)

7. Let \(\ell^2 \) be the set of all real sequences \(\{a_n\}_1^\infty \) such that \(\sum_{n=1}^{\infty} |a_n|^2 < \infty \). Prove that \(\ell^2 \) is a vector space over \(\mathbb{R} \) and that \(\langle \{a_n\}, \{b_n\} \rangle := \sum_{n=1}^{\infty} a_n b_n \) defines an inner product on \(\ell^2 \).

8. Let \(V \) be a finite-dimensional vector space and \(T \) a linear map from \(V \) to itself. Suppose \(\text{range} (T - 2I) \subseteq \text{null} (T - 3I) \). Show that \(T \) is invertible.