1. Show that every entire function is given by a power series that converges locally uniformly on the complex plane. By an entire function we mean a function that is complex analytic on the entire plane.

2. For a given integer $j \in \mathbb{Z}$, find all entire functions f that satisfy $|f(z)| \leq |e^z| |z - i|^j$ for each complex number $z \neq i + 1$.

3. In this question, Ω is a simply connected planar domain that is not the entire complex plane, and $z_0, z_1 \in \Omega$. Show that if f and g are two conformal maps of Ω that map z_0 to z_1, then $f = g$.

4. Compute the exact value of the integral $\int_0^{\infty} \frac{1}{x^{4n} + 1} \, dx$ for each positive integer n.

5. Let D be the open disk $D = \{ z : |z - c| < \rho \}$, where $c, \rho \in \mathbb{R}$ with $0 < \rho < c$ and let H denote the left half-plane $H = \{ z : \text{Re}(z) < 0 \}$. Find the image of the union $D \cup H$ under the mapping

$$z \mapsto \frac{z - a}{z + a}$$

where $a = \sqrt{c^2 - \rho^2} > 0$.