Statistics Qualifying Exam

June 14, 2007

Name :

- 1. Let the random variable X have the Poisson pmf, $p(x) = \frac{m^x e^{-m}}{x!}$, x = 0, 1, 2, 3, ... and 0, elsewhere. Derive the moment generating function for X.
- 2. Let X_1, X_2, X_3, X_4 be four iid random variables with the same pdf, f(x) = 2x, 0 < x < 1, and 0, elsewhere. Find the pdf of $Y = min\{X_1, X_2, X_3, X_4\}$.
- A fair die is cast and let X = 0 if 1, 2, or 3 spots appear, let X = 1 if 4 or 5 spots appear, let X = 2 if 6 spots appear. Do this two independent times, obtaining X₁ and X₂. Compute P(|X₁ X₂| = 1).
- 4. Let X_1, X_2, \ldots, X_n be independent and identically distributed random variables from the uniform distribution on the interval (0, 1).
 - (a) Derive the cumulative distribution function of $X_{(i)}$, the i^{th} order statistic, for i = 1, 2, ..., n.
 - (b) Derive the joint density function of X₍₁₎ and X_(n).
 - (c) Derive the density function of the range $R = X_{(n)} X_{(1)}$.
- 5. Let X_1, \ldots, X_n be i.i.d. $N(\mu, \sigma^2), \mu \in (-\infty, \infty)$ and $\sigma^2 \in (0, \infty)$. Assume that σ^2 is known. We wish to estimate the parametric function $\tau(\mu) = \mu^2$ unbiasedly.
 - (a) Based on X_1 , produce an unbiased estimator of $\tau(\mu) = \mu^2$.
 - (b) Obtain the uniformly minimum variance unbiased estimator (UMVUE) for τ(μ) = μ².
- Suppose that X₁,..., X_n are i.i.d. Uniform(0,4) random variables. Denote U_n = X
 _n for n > 1.
 - (a) Show that $\sqrt{n}(U_n-2) \xrightarrow{D} N(0,\frac{4}{3})$.
 - (b) What is the limiting distribution of $\sqrt{n}(U_n^2 4)$?

- 7. It's claimed that many commercially manufactured dice are not fair. We roll such a dice 6000 times, 921 times we obtain "6". Perform the testing at alpha = 0.05 level. Find out the P-value and critical region.
- It is known that a sample of 12; 11:2; 13:5; 12:3; 13:8; 11:9 comes from a population with the density function

$$f(x;\theta) = \begin{cases} \theta/x^{\theta+1}, & x > 1\\ 0 & otherwise \end{cases}$$

where $\theta > 0$.

- (a) Find the maximum likelihood estimate for θ .
- (b) If the parameter is constrained in $\theta > 10$, find the MLE (provide step to show that it indeed achieves the maximum likelihood in the constrained parameter space.)
- 9. For ANOVA models with unequal sample size, we know that their type I and type III sum of squares are not the same. This is due to the fact that Type I SS weights each observation equally, while Type III SS weights each treatment equally.

Consider the bone data set where factor A is gender, a = 2 levels: male, female; and factor B is bone development, b = 3 levels: severely, moderately, or mildly depressed. The sample sizes are 3, 2, 2 for male and 1, 3, 3 for female. We use contrast to see what is being calculated for type I and type III SS. For type I contrast for gender effect, the hypothesis is $H_0: \mu_{11} + \mu_{12} + \mu_{13} = \mu_{21} + \mu_{22} + \mu_{23}$, where $\mu_{11} = \mu + \alpha_1 + \beta_1 + (\alpha\beta)_{11} \dots$. The contrast statement is

contrast 'gender Type III' gender 3 - 3 gender*bone 1 1 1 -1 -1 -1;

Do the same for type III contrast for <u>bone</u> effect.

10. We are interested in examining the effect of Age, x, (in years) on triglycerides, y. We have 8 subjects: 4 of the subjects are exactly 20 years old, 1 is exactly 25 years old, 2 are exactly 30 years old, and 1 subject is exactly 35 years old. The least squares regression line is computed to be: ŷ = 30 + 5x.

Complete the ANOVA table below (fill in the blanks).

Use the MSE for the Model F-ratio:

Source of variation	Sum of Squares	Degree of Freedom	Mean Square	F-ratio
Model				
Error				
Lack of Fit				5.0
Pure Error				
Total (corrected)	8000			

- 11. Consider the following sas glm output from the "means" statement for 2 way ANOVA.
 - (a) Give the degree of freedoms for the main effects, interaction and error.
 - (b) Write down the factor effect model with model assumptions.
 - (c) Assume zero sum constraint. Compute the estimates for the parameters μ, α_i, β_j, (αβ)_{ij}.

	The GLM Procedure						
Level of			ales				
height	N	Mean		Std I	Std Dev		
1	4	44.0000000		3.1622	3.16227766		
2 3	4	67.0000000		3.7416	3.74165739		
3	4	42.0000000		2.9439	2.94392029		
Level of			iles	1			
width	Ν	Mean		Std I	Std Dev		
1	6	50.0000000		12.066	12.0664825		
2	6	52.0000000		13.431	13.4313067		
Level of	Level of		SE	les			
height	width	Ν	Mean		Std Dev		
1	1	2	45.0000000		2.82842712		
$\frac{1}{2}$	2	$\frac{2}{2}$	43.0000000		4.24264069		
	1	2	65.0000000		4.24264069		
2	2	2	69.0000000		2.82842712		
3	1	2	40.0000000		1.41421356		
3	2	2	44.0000000		2.82842712		