Statistics Qualifying Exam

September 5, 2006

Name :

- 1. Let X_1, \ldots, X_n be i.i.d. $N(\mu, 1), \mu \in (-\infty, \infty)$. We wish to estimate the parametric function $\tau(\mu) = \mu^2$ unbiasedly.
 - (a) Based on X_1 and X_2 , produce an unbiased estimator of $\tau(\mu) = \mu^2$.
 - (b) Obtain the uniformly minimum variance unbiased estimator (UMVUE) for τ(μ) = μ².
- 2. Let X_1 and X_2 be the random variables with joint probability mass function (p.m.f.)

$$p(x_1, x_2) = \theta_1 \theta_2 (1 - \theta_1)^{x_1} (1 - \theta_2)^{x_2}$$

for $x_1 = 0, 1, 2, \ldots$ and $x_2 = 0, 1, 2, \ldots$ What is the p.m.f. of $X_1 - X_2$?

3. Let X_1, \ldots, X_n be i.i.d. random variables with p.d.f

$$f(x;\beta) = \frac{2}{\beta}e^{-\frac{x^2}{\beta}}, \quad x > 0, \quad \beta > 0.$$

- (a) Find the maximum likelihood estimator (MLE) of β .
- (b) Find the maximum likelihood estimator (MLE) of $\sqrt{\beta}$.
- Let X₁ and X₂ be a random sample of size n = 2 from a poisson distribution with mean λ. Reject the simple null hypothesis H₀: λ = 0.5 and accept H₁: λ > 0.5 if the observed sum Σ²_{i=1} x_i ≥ 2.
 Compute the type I error α of the test. Assume the alternative value of λ = 0.6,

Compute the type I error α of the test. Assume the alternative value of $\lambda = 0.6$, compute type II error. Find the power of the test.

5. Find the moment generating function of $X \sim f(x) = 1$, where 0 < x < 1, and thereby confirm that E(X) = 1/2 and V(X) = 1/12.

- (a) Assume the usual model for a one-way ANOVA with 4 groups and 6 observations per group. Find the usual estimate σ² if SSE = 60.
 - (b) For a one-way ANOVA with 3 groups and 4 observations per group, give the degrees of freedom for the F statistic that is used to compare the group means.
 - (c) Suppose that MSE = 25 in a one-way ANOVA with 3 groups and sample sizes $J_1 = 10, J_2 = 20$ and $J_3 = 15$. Give the standard deviation of the estimate of the contrast that compares the average of the means of the first two groups with the mean of the third group.
- In a two-factor ANOVA, factor A has 3 levels and factor B has 4 levels. There are 3 observations per treatment.
 - (a) Give the degrees of freedom for each of the following(as they would appear in the ANOVA tables):
 - (i) factor A
 - (ii) factor B
 - (iii) interaction A*B
 - (iv) model
 - (v) error
 - (b) SSA = 60 and SSE = 120. Calculate the F-statistics for testing for a factor A main effect, and give the degrees of freedom for that test.
 - (c) Will the type I and type III sums of squares be the same or different in this analysis? Give a clear answer and a brief explanation.
- 8. Let $y_i = \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon_i$, i = 1, ..., n (n > 3) where x's are known constants and $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are i.i.d. $N(0, \sigma^2)$.
 - (a) Use the methods of Least Square to estimate β₁ and β₂.
 - (b) Show that the estimators of β_1 and β_2 are unbiased
 - (c) Find the standard error of the estimators of β_1 and β_2 .
- 9. Consider the linear model

$$Y_1 = \beta_1 + \beta_2 + \beta_3 + \epsilon_1$$

$$Y_2 = \beta_1 + \beta_3 + \epsilon_2$$

$$Y_3 = \beta_2 + \beta_3 + \epsilon_3$$

where $\epsilon_1, \epsilon_2, \epsilon_3$ i.i.d. $N(0, \sigma^2)$.

- (a) Express in the form y = Xβ + ε where β = (β₁, β₂, β₃)'.
- (b) Estimate $\beta_1 2\beta_2 + \beta_3$ and obtain its variance.