Statistics Qualifying Exam

TUESDAY, JUNE 14, 2011 NOON - 4 PM

Name :

- 1. Let U_1 and U_2 be independent uniform (0, 1) random variables with pdf, f(u) = 1 for 0 < u < 1; 0 elsewhere. Find the pdf of the ratio $Y = U_1/U_2$.
- 2. Let $Y_1 \leq Y_2 \leq \cdots \leq Y_6$ be the order statistics from a random sample of size 6 from a population with pdf f(x) and cdf F(x). Let the interval defined by $[Y_5, Y_6]$ be a confidence interval for the upper quartile of the population, $F^{-1}(0.75)$. What is the confidence level of this interval?
- 3. Let X_i be independent Poisson random variables with mean= $i\mu$ for i = 1, ..., n. Find $\hat{\mu}$, the maximum likelihood estimator of μ . (Recall that, for a Poisson random variable, X, with mean= μ , $P(X = x) = \mu^x e^{-\mu}/x!$.)
- 4. A local radio station plays 40 songs during each 4-hour show. The program director at the station needs to know the total amount of airtime for the 40 songs so that time can also be programmed during the show for news and advertisements. The distribution of the lengths of songs, in minutes, is roughly symmetric with a mean length of 3.9 minutes and a standard deviation of 1.1 minutes.
 - (a) Describe the sampling distribution of the sample mean song lengths for the random samples of 40 songs.
 - (b) If the program manager schedules 80 minutes of news and advertisements for the 4-hour (240-minute) show, only 160 minutes are available for music. Approximately what is the probability that the total amount of time needed to play 40 randomly selected songs exceeds the available airtime?
- 5. Let X_1, \ldots, X_n be independent exponential random variables with pdf, $f(x) = e^{-x}$ for x > 0; 0 elsewhere. Let Y_1 be the minimum of the X's. Find the limiting distribution of $W_n = nY_1$ and its pdf.

6. Consider the linear model

$$Y_1 = \beta_1 + \beta_2 + \beta_3 + \epsilon_1; \quad Y_2 = \beta_1 + \beta_3 + \epsilon_2; \quad Y_3 = \beta_2 + \beta_3 + \epsilon_3$$

where $\epsilon_1, \epsilon_2, \epsilon_3$ i.i.d. $N(0, \sigma^2)$.

- (a) Express in the form $\mathbf{y} = \mathbf{X}\beta + \epsilon$ where $\beta = (\beta_1, \beta_2, \beta_3)'$.
- (b) Estimate $\beta_1 2\beta_2 + \beta_3$ and obtain its variance.
- 7. For ANOVA models with unequal sample size, we know that their type I and type III sum of squares are not the same. This is due to the fact that Type I SS weights each observation equally, while Type III SS weights each treatment equally.

Consider the bone data set where factor A is gender, a = 2 levels: male, female; and factor B is bone development, b = 3 levels: severely, moderately, or mildly depressed. The sample sizes are 3, 2, 2 for male and 1, 3, 3 for female. We use contrast to see what is being calculated for type I and type III SS.

- (a) (5+5 pt) What is the type I and type III contrast statements (in SAS) for gender effect, the hypothesis is $H_0: \mu_{1.} = \mu_{2.}$.
- (b) (5+5 pt) Find the type I and type III contrasts for <u>bone</u> effect, $H_0: (\mu_{.1} + \mu_{.2})/2 = \mu_{.3}$.
- 8. A survey of 1000 students concluded that 274 students chose a professional baseball team, A, as his or her favorite team. In 1991, the same survey was conducted involving 760 students. It concluded that 240 of them also chose team A as their favorite.
 - (a) Estimate the proportions of students favoring team A between the two surveys.
 - (b) Compute a 95% confidence interval for the difference between the proportion of students favoring team A between the two surveys.
 - (c) Is there a significant difference between two proportions? Make use of a P-value.

9. A production plant cost-control engineer is responsible for cost reduction. One of the costly items in his plant is the amount of water used by the production facilities each month. He decided to investigate water usage by collecting 17 observations on his plant's water usage and other variables. He had heard about multiple regression, but since he was quite skeptical he added a column of random numbers to his original observations. Use the attached information.

Data code
$X_1 = \text{average monthly temperature}(\mathbf{F})$
$X_2 = \text{average of production (M pounds)}$
X_3 = number of plant operating days in the month
X_4 = number of persons on the monthly plant payroll
$X_5 = $ two-digit random number
Y = is the monthly water usage (gallons)

- (a) Find the fitted regression model of $Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \beta_5 X_{5i} + \epsilon_i$ and complete the ANOVA table on your answer sheet (not on the exam sheet).
- (b) Test the hypothesis $H_0: \beta_1 = \beta_3 = \beta_5 = 0$ v.s. $H_1: \beta_3 = \beta_5 = 0$. Use $\alpha = .05$.
- (c) Perform a stepwise regression using a $\alpha = .05$ level of significance for entering and staying.
- (d) Comment on the role of the variable X_5 .

		Sum of	Mean	
Source	DF	Squares	Square	F Value
Model				
Error		722691		
Corrected Total		3192632		

-	Parar		Parameter	Standard			
	Variable	\mathbf{DF}	Estimate	Error	t Value	Pr > t	
-	Intercept	1 (6487.35183	1371.64753	4.73	0.0006	
	x1	1	14.11699	5.33024	2.65	0.0226	
	x2	1	0.21378	0.04703	4.55	0.0008	
	x3	1 ·	-126.99857	49.44390	-2.57	0.0261	
	x4	1	-22.37849	7.56462	-2.96	0.0130	
	x5	1	-1.34918	2.38034	-0.57	0.5822	
-							
Number in							
Model	R-Square	e C	(p) A	IC MSE	SSE	Variables i	n Model
1	0.3978	3 16.2	616 201.8	103 128164	1922459	x2	
1	0.1708	3 27.2	961 207.2	500 176495	2647418	x4	
1	0.0817	31.6	266 208.98	853 195462	2931930	x1	
1	0.0079	35.2	113 210.29	988 211163	3167442	x3	
1	0.0043	35.3	854 210.3	601 211926	3178883	$\mathbf{x5}$	
2	0.5742	2 9.69	907 197.9	183 97097	1359361	x2 x4	
2	0.4885	5 13.8	573 201.03	373 116650	1633106	x1 x2	
2	0.4223	3 17.0	730 203.10	054 131741	1844373	x2 x3	
2	0.3979) 18.2	605 203.80	097 137313	1922389	x2 x5	
2	0.2737	24.2	966 206.99	981 165640	2318960	x1 x4	
2	0.1812	2 28.7	900 209.03	351 186726	2614168	x3 x4	
2	0.1708	3 29.2	961 209.2	500 189101	2647418	x4 x5	
2	0.1382	2 30.8	770 209.90	042 196520	2751284	x1 x3	
2	0.0911	33.1	699 210.8	104 207280	2901925	x1 x5	
2	0.0118	3 37.0	226 212.23	321 225360	3155042	x3 x5	
9	0.6319	8.8	875 197.4	434 90399	1175191	x1 x2 x4	
3	0.6268	9.1	372 197.6'	791 91662	1191601	x2 x3 x4	
3	0.5929) 10.7	846 199.1	570 99987	1299830	x1 x2 x3	
3	0.5774	11.5	361 199.79	908 103785	1349205	x2 x4 x5	
3	0.4892	2 15.8	213 203.02	126 125441	1630736	x1 x2 x5	
3	0.4225	5 19.0	653 205.10	008 141836	1843869	x2 x3 x5	
3	0.3475	5 22.7	068 207.1	747 160239	2083110	x1 x3 x4	
3	0.2746	6 26.2	503 208.9'	757 178147	2315914	x1 x4 x5	
3	0.1812	2 30.7	890 211.03	347 201085	2614103	x3 x4 x5	
3	0.1481	32.3	963 211.7	080 209208	2719705	x1 x3 x5	
4	0.7670) 4.3	213 191.6	61983	743798	x1 x2 x3 x	4
4	0.6379	10.5	974 199.1	354 96344	1156134	x1 x2 x4 x	5
4	0.6293	3 11.0	144 199.5	636 98628	1183531	x2 x3 x4 x	5
4	0.5935	5 12.7	516 201.12	287 108139	1297663	x1 x2 x3 x	5
4	0.3485	5 24.6	612 209.1	502 173343	2080114	x1 x3 x4 x	5
5	0.7736	6.0	000 193.1'	779 65699	722691	x1 x2 x3 x	4 x5

Parameter Estimates