## Statistics Qualifying Exam

9:00 am - 1:00 pm, Monday, August 15, 2016

- 1. Let us choose at random a point from the interval (0,1) and let the random variable  $X_1$  be equal to the number which corresponds to that point. Then choose a point at random from the interval  $(0, x_1)$ , where  $x_1$  is the experimental value of  $X_1$ ; and let the random variable  $X_2$  be equal to the number which corresponds to this point.
  - (a) Make assumptions about the marginal probability density function (pdf)  $f_1(x_1)$  and the conditional pdf  $f_{2|1}(x_2|x_1)$ .
  - (b) Compute  $P(X_1 + X_2 \ge 1)$ .
  - (c) Find the conditional mean  $E[X_1|x_2]$ .
- 2. Assume the random variable X follows a Poisson distribution with a probability mass function (pmf) as

$$P(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, x = 0, 1, 2, \dots,$$

where  $\lambda > 0$  is the mean parameter.

- (a) Show that the moment generating function (mgf) is  $M_X(t) = e^{\lambda(e^t 1)}$ .
- (b) Use the mgf to find Var(X).
- (c) Suppose that  $Y_1$  has a Poisson distribution with mean  $\lambda_1$ , and that the conditional distribution of  $Y_2$  given  $Y_1 = y_1$  is Binomial on  $y_1$  trials with success probability  $p, 0 . Find the marginal distribution of <math>Y_2$ .
- 3. Let  $X_1, X_n$  are identically and independently distributed with the pdf as  $f(x|\theta) = \theta x^{\theta-1}, \theta > 0, 0 < x < 1.$ 
  - (a) Find a sufficient and complete statistic for  $\theta$ .
  - (b) Find the maximum likelihood estimator (MLE) of  $\theta$ . Is the MLE an unbiased estimator for  $\theta$ ? Show it.
  - (c) Find the minimum variance unbiased estimator (MVUE) of  $\theta$ .
  - (d) Does MVUE of  $\theta$  achieve the Rao-Cramer lower bound? Show it.
- 4. Let  $Y_1 < Y_2 < Y_3 < Y_4$  be the order statistics of a random sample of size n = 4 from a distribution with pdf  $f(x; \theta) = 1/\theta$ ,  $0 < x < \theta$ , zero elsewhere, where  $\theta > 0$ . The hypothesis  $H_0: \theta = 1$  is rejected and  $H_1: \theta > 1$  is accepted if the observed  $Y_4 \ge c$ .
  - (a) Find the constant c such that the significance level is  $\alpha = 0.05$ .
  - (b) Determine the power function of the test.

5. Consider the following ANOVA table for the multiple linear model

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon,$$

where the error term  $\epsilon$  are independent and identical normal random variables with mean 0 and variance  $\sigma^2$ .

| Source         | $\mathbf{SS}$ | df | MS      |
|----------------|---------------|----|---------|
| Model          | 2176606       | 3  | 725535  |
| $X_1$          | 136366        | 1  | 136366  |
| $X_2 X_1$      | 2033565       | 1  | 2033565 |
| $X_3 X_1, X_2$ | 6675          | 1  | 6675    |
| Error          | 985530        | 48 | 20532   |
| Total          | 3162136       | 51 |         |

- (a) Find  $SSR(X_2, X_3 | X_1)$ .
- (b) For the model  $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$ , using the answer to part a) test the following hypothesis using  $\alpha = 0.05$ :

$$H_0: \beta_2 = \beta_3 = 0$$
 vs.  $H_1:$  Not both  $\beta_2$  and  $\beta_3 = 0$ 

- (c) Compute the coefficient of partial determination between Y and  $X_2$  given that  $X_1$  is in the model, i.e., find  $R_{Y_2|1}^2$ . Interpret the result.
- (d) With the given information, can a "best" multiple linear regression model be selected using a forward selection procedure for this application? If yes, show your detailed procedure; if no, explain.
- 6. A clay tile company is interested in studying the effects of cooling temperature on strength. Since the company has five ovens which produce the tiles, four tiles were baked in each oven and then randomly assigned to one of the four cooling temperatures (° C). The data are shown below.

| Cooling |      |       | Oven  |      |      |       |
|---------|------|-------|-------|------|------|-------|
| Temp    | 1    | 2     | 3     | 4    | 5    | Mean  |
| 5       | 3    | 10    | 7     | 4    | 3    | 5.40  |
| 10      | 3    | 8     | 12    | 2    | 4    | 5.80  |
| 15      | 9    | 13    | 15    | 3    | 10   | 10.00 |
| 20      | 7    | 12    | 9     | 8    | 13   | 9.80  |
| Mean    | 5.50 | 10.75 | 10.75 | 4.25 | 7.50 | 7.75  |

- (a) Give an appropriate model to analyze this data, and state the assumptions.
- (b) If MSE = 6.275, compute the *F*-statistic to determine if there is a difference among the four cooling temperatures (use  $\alpha = 0.05$ ).
- (c) Perform pairwise comparisons for the four cooling temperatures using Tukey's procedure. What are your conclusions?
- (d) Suppose the company believes there is a jump in the strength at  $12.5^{\circ}$  C but otherwise cooling temperature has no effect (i.e., step function - - -). To test this, we find the following contrasts:

$$\mathbf{C}_1 = (1, -1, 0, 0)$$
$$\mathbf{C}_2 = (0, 0, 1, -1)$$
$$\mathbf{C}_3 = (1, 1, -1, -1)$$

Test these contrasts simultaneously using the Bonferroni's method with  $\alpha = 6\%$ .

7. An engineer suspects that the surface finish of a metal part is influenced by the feed rate and the depth of cut. He selects three feed rates and four depths of cut. He then conducts a factorial experiment and obtains the following data.

|                      |               | Depth of      | Cut (in)   |             |
|----------------------|---------------|---------------|------------|-------------|
| Feed rate $(in/min)$ | 1             | 2             | 3          | 4           |
| 1                    | 74,  64,  60  | 79,68,73      | 82, 88, 92 | 99,104,96   |
| 2                    | 92, 86, 88    | 98,104,88     | 99,108,95  | 104,110,99  |
| 3                    | 99,  98,  102 | 104,  99,  95 | 108,110,99 | 114,111,107 |

Some summary statistics are give below.

Grand mean: 94.333

| feed | mean    | Ι       | depth | mean    |
|------|---------|---------|-------|---------|
| 1    | 81.583  | I       | 1     | 84.778  |
| 2    | 97.583  | I       | 2     | 89.778  |
| 3    | 103.833 | I       | 3     | 97.889  |
|      |         | I       | 4     | 104.889 |
|      |         |         |       |         |
| feed | depth   | mean    |       |         |
| 1    | 1       | 66.000  |       |         |
| 1    | 2       | 73.333  |       |         |
| 1    | 3       | 87.333  |       |         |
| 1    | 4       | 99.667  |       |         |
| 2    | 1       | 88.667  |       |         |
| 2    | 2       | 96.667  |       |         |
| 2    | 3       | 100.667 |       |         |
| 2    | 4       | 104.333 |       |         |
| 3    | 1       | 99.667  |       |         |
| 3    | 2       | 99.333  |       |         |
| 3    | 3       | 105.667 |       |         |
| 3    | 4       | 110.667 |       |         |

Suppose the following statistical model is used to fit the data.

 $Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}; k = 1, 2, 3$ 

where  $\tau_i$  (i = 1, 2, 3) and  $\beta_j$  (j = 1, 2, 3, 4) are the effects of feed rate and cut depth, and  $(\tau\beta)_{ij}$  are their interactions. For parameter estimation, we impose the following constraints as in the lecture notes:  $\sum_i \tau_i = \sum_j \beta_j = \sum_i (\tau\beta)_{ij} = \sum_j (\tau\beta)_{ij} = 0$ . The ANOVA of the data was done in SAS and the output is shown.

| Dependent | Varia | ble: finish |             |         |        |
|-----------|-------|-------------|-------------|---------|--------|
|           |       | Sum of      |             |         |        |
| Source    | DF    | Squares     | Mean Square | F Value | Pr > F |
| Model     | 11    | 5842.667    | 531.151515  | 18.49   | <.0001 |
| Error     | 24    | 689.333     | 28.722222   |         |        |
| Co Total  | 35    | 6532.000    |             |         |        |
|           |       |             |             |         |        |
| ource     | DF    | Type I SS   | Mean Square | F Value | Pr > F |
| feed      | 2     | 3160.500    | 1580.250    | 55.02   | <.0001 |
| depth     | 3     | 2125.111    | 708.370     | 24.66   | <.0001 |
| feed*dept | h 6   | 557.056     | 92.843      | 3.23    | 0.0180 |
|           |       |             |             |         |        |

## (a) What are the estimates of $\tau_1$ and $(\tau\beta)_{22}$ ?

(b) Test if the interaction between feed rate and cut depth is significant. To get full credits, give a test statistic, the corresponding p-value and your conclusion.

(c) If we plan to perform pairwise comparison for *all* treatment combinations, which procedure should we use? What is the corresponding critical difference (using  $\alpha = 5\%$ )?

(d) Use the Bonferroni method to compare the following treatments (i.e. the level combinations of speed and depth): (2,3), (2,4), (3,3) and (3,4), *pairwisely* (Use  $\alpha = 6\%$ ). Calculate the critical difference and report your results of comparison. You can report the result as we have seen in SAS output by labeling significantly different combinations with different Latin letter.

8. Answer the following questions.

(a) An engineer is interested in the effects of cutting speed (A), tool geometry (B), and cutting angle (C) on the life (in hours) of a machine tool. Two levels of each factor are chosen, and three replicates of a  $2^3$  factorial design are run. The results follow:

|   | factor |   | replicate |    |     |
|---|--------|---|-----------|----|-----|
| А | В      | С | Ι         | II | III |
| - | -      | - | 22        | 31 | 25  |
| + | -      | - | 32        | 43 | 29  |
| - | +      | - | 35        | 34 | 50  |
| + | +      | - | 55        | 47 | 46  |
| - | -      | + | 44        | 45 | 38  |
| + | -      | + | 40        | 37 | 36  |
| - | +      | + | 60        | 50 | 54  |
| + | +      | + | 39        | 41 | 47  |

Please complete the missing values for the degrees of freedom (DF) and Source in the following tables indicated by "???".

|                |               | Sum of    |
|----------------|---------------|-----------|
| Source         | $\mathrm{DF}$ | Squares   |
| Model          | ???           |           |
| Error          | ???           |           |
| Corrected Tota | al ???        |           |
|                |               |           |
| Source         | DF            | Type I SS |
| А              | ???           |           |
| ???            | ???           |           |
| ???            | ???           |           |
| ???            | ???           |           |
| ???            | ???           |           |
| ???            | ???           |           |
| ???            | ???           |           |

(b) Suppose I run a  $2^{6-2}$  design using

$$I = ABCDE = CDEF = ABEF.$$

If I include all main effects and two-way interactions in my model statement, fill in the following ANOVA table with both Type I and Type III degrees of freedom.

| Source              | Type I df | Type III df |
|---------------------|-----------|-------------|
| A                   | J I       | JI          |
| В                   |           |             |
| C                   |           |             |
|                     |           |             |
| D                   |           |             |
| Е                   |           |             |
| $\mathbf{F}$        |           |             |
|                     |           |             |
| AB                  |           |             |
| AC                  |           |             |
| AD                  |           |             |
| AE                  |           |             |
| $\mathbf{AF}$       |           |             |
|                     |           |             |
| BC                  |           |             |
| BD                  |           |             |
| BE                  |           |             |
| BF                  |           |             |
|                     |           |             |
| CD                  |           |             |
| CE                  |           |             |
| $\operatorname{CF}$ |           |             |
| DD                  |           |             |
| DE                  |           |             |
| DF                  |           |             |
| $\mathbf{EF}$       |           |             |
| Error               |           |             |
| Total               |           |             |
| TOTAL               |           |             |