Statistics Prelim Exam Part 2 - Statistical Methods

 $10{:}00~\mathrm{am}$ - $12{:}30~\mathrm{pm},$ Wednesday, May 7, 2025

- 1. Suppose X_1, \ldots, X_n is a random sample from $N(\mu_1, \sigma^2)$ and Y_1, \ldots, Y_m is an independent random sample from a $N(\mu_2, \tau^2)$ population, where μ_1, μ_2, σ^2 and τ^2 are all unknown and $n, m \ge 2$.
 - (a) Assume $\sigma^2 = \tau^2$. Suppose we wish to test $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$. Derive the likelihood ratio test (LRT) for this hypothesis (simplest possible form), and find an explicit expression for the exact rejection region of a size α test.
 - (b) Assume $\mu_1 = \mu_2 = \mu$ and $\sigma^2 = \lambda \tau^2$ with $\lambda > 0$ and λ known. Find the minimum sufficient statistics for the unknown parameters μ and τ^2 .
- 2. Let X_1, \ldots, X_n be a random sample from a normal population as $\mathcal{N}(\theta, \sigma^2)$, and $\sigma^2 > 0$ is known. Suppose that the hypotheses to be tested are

$$H_0: \theta \leq 0$$
 versus $H_1: \theta > 0$.

- (a) Derive a uniformly most powerful (UMP) test of size α for testing the above hypotheses.
- (b) Assume a prior distribution on θ is $\mathcal{N}(0, \tau^2)$, where τ^2 is known. Calculate the posterior probability that H_0 is true, i.e. $P(\theta \leq 0 | x_1, \ldots, x_n)$.
- (c) Show that $\lim_{\tau^2 \to \infty} P(\theta \le 0 | x_1, \dots, x_n) = p$ -value for testing the hypotheses in Part (a).
- (d) For the special case $\sigma^2 = \tau^2 = 1$ and for sample mean values $\overline{x} > 0$, compare the values of $P(\theta \le 0 | x_1, \ldots, x_n)$ and the p-value of the test derived in Part (a). Show that $P(\theta \le 0 | x_1, \ldots, x_n)$ is always greater than the p-value.
- 3. Let X_1, \ldots, X_n be a random sample from the exponential distribution E(a, b) with parameters b > 0 and $a \in (-\infty, +\infty)$ with the probability density function as

$$f(x) = \frac{1}{b} \exp\left[-\frac{(x-a)}{b}\right], \quad x \ge a.$$

- (a) When b is known, show the distribution of $n[X_{(1)} a]/b$ is E(0, 1) and confirm that the uniformly minimum variance unbiased estimator (UMVUE) of a is $X_{(1)} (b/n)$, where $X_{(1)}$ is the minimum order statistic.
- (b) Assume that b is known. Find the UMVUE of $P(X_1 \ge t)$ and $\frac{d}{dt}P(X_1 \ge t)$ for a fixed t > 0, where X_1 is arbitrarily the first random variable in the random sample.
- (c) Now assume a is known and b is unknown. Find the maximum likelihood estimator $\hat{g}(b)$ of $g(b) = P(X_1 \leq 2a)$. Clearly identify the asymptotic distribution of $\sqrt{n}(\hat{g}(b) g(b))$ as $n \to \infty$.
- 4. Let X_1, \ldots, X_n be a random sample from $Poisson(\theta)$ distribution, where θ is the mean parameter, $\theta > 0$ and $n \ge 1$.
 - (a) Does an unbiased estimator of $1/\theta$ exist? Clearly justify your answer.
 - (b) Find the uniformly minimum variance unbiased estimator (UMVUE) for $\tau(\theta) = \exp(-t\theta)$ with a fixed t > 0.