Statistics Qualifying Exam

12-4pm, Tuesday, August 19, 2025

Answer questions with showing all of your work. This is closed-note/book. A calculator is allowed.

1. Let X_1, \ldots, X_n be a random sample from a population with probability density function (pdf)

$$f_X(x) = \begin{cases} \frac{1}{\theta}, & \text{if } 0 < x < \theta \\ 0, & \text{otherwise} \end{cases}$$

Let $X_{(1)} < \cdots < X_{(n)}$ be the order statistics. Show that $X_{(1)}/X_{(n)}$ and $X_{(n)}$ are independent random variables.

- 2. Let X_1, \ldots, X_n be a random sample from $\mathcal{N}(\theta, 1)$.
 - (a) Show that the unique UMVUE (Uniformly Minimum Variance Unbiased Estimator) of θ^2 is $\bar{X}^2 \frac{1}{n}$.
 - (b) Calculate the variance of $\bar{X}^2 \frac{1}{n}$. Hint: It is known that the moment-generating function of a normal distribution $\mathcal{N}(\mu, \sigma^2)$ is

$$M_X(t) = \mathbb{E}[e^{tX}] = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right), \quad \text{for } t \in \mathbb{R}.$$

- (c) Is the estimator in (a) an efficient estimator? Clearly justify your answer.
- 3. Let $Y_1 < Y_2 < \cdots < Y_n$ denote the order statistics of a random sample of size n from a distribution that had pdf $f(x) = \frac{3x^2}{\theta^3}$, $0 < x < \theta$; zero elsewhere.
 - (a) Show that $P(c < \frac{Y_n}{\theta} < 1) = 1 c^{3n}$, where 0 < c < 1.
 - (b) If n is 4 and if the observed value of Y_4 is 2.3, what is a 95% confidence interval for θ ?
- 4. Let X_1,\ldots,X_n be a random sample from $N(\mu,\theta),\,0<\theta<\infty$ where μ is known. Let $S^2=\frac{1}{n-1}\sum_{i=1}^n(X_i-\bar{X})^2$. We know that $E(S^2)=\theta$.
 - (a) What is the efficiency of S^2 ?
 - (b) What is the MLE, $\hat{\theta}$, of θ ?
 - (c) What is the asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$?
 - (d) Find an exact Likelihood Ratio (LR) test for

$$H_0: \theta = \theta_0$$
 v.s. $H_1: \theta \neq \theta_0$

1

at significance level $\alpha \in (0,1)$ where $\theta_0 \in (0,\infty)$ is fixed.

5. Suppose that we conduct the simple regression analysis with n=4 observations $\{(y_1,x_1),(y_2,x_2),\cdots,(y_n,x_n)\}$ with the first-order model,

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2).$$

The R code below is showing: (i) the vector y (response) and x (predictor); (ii) the calculated hat matrix $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$; (iii) the linear model output from R 1m function.

```
> y=c(4,5.5,6.2,7.8)
> x=c(2,3,4,5)
> X=cbind((rep(1,4)),(x))
> H=X%*%solve(t(X)%*%X)%*%t(X)
> H
[,1] [,2] [,3] [,4]
[1,] 0.7 0.4 0.1 -0.2
[2,] 0.4 0.3 0.2 0.1
[3,] 0.1 0.2 0.3 0.4
[4,] -0.2 0.1 0.4 0.7
> SLR=lm(y~x)
> summary(SLR)
Call:
lm(formula = y \sim x)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) ?????? 0.4455 3.681 0.06651.
             1.2100 0.1212 9.980 0.00989 **
Signif. codes: 0 '*' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.2711 on 2 degrees of freedom
Multiple R-squared: 0.9803, Adjusted R-squared: 0.9705
F-statistic: 99.6 on 1 and 2 DF, p-value: 0.009892
```

- (a) Write down the fitted model when the assumed model is $y = \beta_0 + \beta_1 x_1 + \epsilon$. Interpret the regression coefficient of x_1 .
- (b) Based on this output, find the residuals of the above regression.
- (c) Given the above output find the estimated correlation between residual e_1 and e_4 .
- (d) Find the estimated variance of all 4 residuals $Var(e_i)$ for i=1,2,3,4. Are these variances equal?
- (e) Based on this output, identify an influential point. Clearly state the metric used to identify the influential point.

6. The following example is adapted from Tryfos (1998, pp. 130-1). According to Tryfos: "Before construction begins, a bridge project goes through a number of stages of production, one of which is the design stage. This phase is composed of various activities, each of which contributes directly to the overall design time. In short, predicting the design time is helpful for budgeting and internal as well as external scheduling purposes."

Information from 45 bridge projects was compiled for use in this study. The response and predictor variables are as follows:

```
\circ Y = \text{Time} = \text{design time in person-days}
```

```
\circ X1 = DArea = Deck area of bridge (000 sq ft)
```

- \circ X2 = CCost = Construction cost (\$000)
- \circ X3 = Dwgs = Number of structural drawings
- \circ X4 = Length = Length of bridge (ft)
- $\circ X5 = \text{Spans} = \text{Number of spans}$

A summary of the multiple linear regression is given in next page.

```
 \begin{array}{l} \text{Use t-values:} t_{0.025,40} = 2.021, t_{0.05,40} = 1.684, t_{0.025,5} = 2.7764, t_{0.05,5} = 2.1318, \\ t_{0.025,39} = 2.022691, t_{0.05,39} = 1.684875, t_{0.025,6} = 2.44691, t_{0.05,6} = 1.94318, \\ t_{0.025,41} = 2.019541, t_{0.05,41} = 1.682878, t_{0.025,42} = 2.018082, t_{0.05,42} = 1.681952, \end{array}
```

```
> MultiReg1=lm(formula = Y \sim X1 + X2 + X3 + X4 + X5) >
```

> summary(MultiReg1)

Call:

 $lm(formula = Y \sim X1 + X2 + X3 + X4 + X5)$

Residuals:

Min 1Q Median 3Q Max -81.816 -26.797 -9.674 24.882 180.443

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)	
(Intercept)	-34.83256	25.03837	-1.391	0.172	
X1	0.24675	1.63170	0.151	0.881	
X2	-0.02107	0.07143	-0.295	0.770	
Х3	19.68195	4.08583	4.817	2.23e-05	***
X4	0.05186	0.10378	0.500	0.620	
X5	15.50454	10.14243	1.529	0.134	

Residual standard error: 55.31 on 39 degrees of freedom Multiple R-squared: 0.7101, Adjusted R-squared: 0.6729 F-statistic: 19.1 on 5 and 39 DF, p-value: 1.435e-09 > anova(MultiReg1)

Analysis of Variance Table (Type I Sum of Squares)

Response: Y

- (a) Is it worth including X5 in the model that already contains X1, X2, X3, and X4?
- (b) Suppose you have decided in part (a) to drop X5 variable form the model. Is it worth including X4 in the model that already contains X1, X2 and X3? Explain. Use $\alpha=0.05$, and give hypotheses, test statistic, which $F(a;df_1,df_2)$ you used, (the value or the range of) p-values, and conclusions, in order to get full credits.
- (c) Assume modeling assumptions hold true. After fitting the regression model, the researchers concluded that the null hypothesis that $\beta_2 \geq 1$ was rejected at significance level $\alpha = 0.05$ against the alternative hypothesis that $\beta_2 < 1$. One of the researchers concluded: "At significance level $\alpha = 0.05$, we reject the null hypothesis." Do you agree with this assessment?
- (d) We use the function regsubsets with nbest=4 in R to perform best-subset based model selection. Output is summarized below. rss denotes the sum of squares of errors/residuals (SSE). Based on the results, which model would you select to explain the design time in person-days using:
 - i. A criteria.
 - ii. Using a forward selection process.

Explain all steps.

	model	р	rsq	rss	adjr2	ср	bic	stderr
1	Х3	2	0.635	150281	0.626	8.12	-37.7	59.1
2	X4	2	0.477	215346	0.465	29.38	-21.5	70.8
3	X5	2	0.466	219705	0.454	30.81	-20.6	71.5
4	X2	2	0.416	240166	0.403	37.49	-16.6	74.7
5	X3-X5	3	0.708	120095	0.694	0.25	-44.0	53.5
6	X3-X4	3	0.685	129468	0.670	3.31	-40.6	55.5
7	X1-X3	3	0.655	141833	0.639	7.35	-36.5	58.1
8	X2-X3	3	0.649	144491	0.632	8.22	-35.7	58.7
9	X3-X4-X5	4	0.709	119611	0.688	2.09	-40.4	54.0
10	X1-X3-X5	4	0.708	120094	0.687	2.25	-40.2	54.1
11	X2-X3-X5	4	0.708	120094	0.687	2.25	-40.2	54.1
12	X2-X3-X4	4	0.687	128763	0.664	5.08	-37.1	56.0
13	X2-X3-X4-X5	5	0.710	119400	0.681	4.02	-36.7	54.6
14	X1-X3-X4-X5	5	0.709	119596	0.680	4.09	-36.6	54.7
15	X1-X2-X3-X5	5	0.708	120093	0.679	4.25	-36.4	54.8
16	X1-X2-X3-X4	5	0.693	126480	0.662	6.34	-34.1	56.2
17	X1-X2-X3-X4-X5	6	0.710	119330	0.673	6.00	-32.9	55.3

7. A management information systems consultant conducted a small-scale study of five different daily summary reports (A: the greatest amount of details; B; C; D; E: the least amount of details with B, C, D in the middle with gradually decreased amount of details). Five sales executives were used in the study. Each was given one type of daily report for a month and then was asked to rate its helpfulness on a 25-point scale (0: no help; 25: extremely helpful). Over a five-month period, each executive received each type of report for one month according to the latin square design shown below. The helpfulness ratings follow. The SAS output for the analysis of this experiment is included below.

			Month		
Executive	March	April	May	June	July
Harrison	21(D)	8(A)	17(C)	9(B)	16(E)
Smith	5(A)	10(E)	3(B)	12(C)	15(D)
Carmichael	20(C)	10(B)	15(E)	22(D)	12(A)
Loeb	4(B)	17(D)	3(A)	9(E)	10(C)
Munch	17(E)	16(C)	20(D)	7(A)	11(B)

(a) Complete the ANOVA table above by filling in the missing values marked by "****" in the SAS output provided.

Table 1: ANOVA Table

source of					
variation	df	SS	MS	F	p-value
report					
(D					
executive (Row))				
month (Column)				
	,				
Error					
Total					

- (b) Test weather or not the five types of reports differ in mean helpfulness; use significance level $\alpha = 0.01$. State the alternatives, decision rule, and conculsion. What is the *p*-value of the test?
- (c) Analyze the effectiveness of the five types of reports by making all pairwise computarisons among the treatment means. Use the Tukey procedure and a 95 percent family confidence coefficient. Summarize your findings.

SAS Output

Class Level Information

Class	Levels	Values
executive	5	Carmicha Harrison Loeb Munch Smith
month	5	April July June March May
report	5	A B C D E

Source	DF	Sum of Squares	Mean Square	F Value	Pr>F
Model	****	758.48	***	***	<.0001
Error	****	19.28	***		
Corrected Total	****	777.76			

R-Square	Coeff Var	Root MSE	rating Mean
0.975211	10.25521	1.267544	12.36

Source	DF	Type III SS	Mean Square	Pr > F
executive	****	220.16	***	< 0.0001
month	****	10.96	***	0.2132
report	* * * *	527.36	***	< 0.0001

Report Level	N	Mean Rating	Std Dev
A	5	7.00	3.39
В	5	7.40	3.65
С	5	15.00	4.00
D	5	19.00	2.92
E	5	13.40	3.65

- 8. The yield of a chemical process is being studied. The two most important variables are thought to be the pressure and the temperature. Three levels of each factor are selected, and a factorial experiment with two replicates is performed. Please see the attached SAS output (next page).
 - (a) Write down the two-factor fixed effects model to analyze this experiment. Clearly label all the notations and specify all the appropriate assumptions and constraints in the model.
 - (b) Estimate the difference between the treatment means $D=\mu_{11}-\mu_{13}$, where μ_{11} is the factor level mean with Temperature = 150 and Pressure = 200, and μ_{13} is the factor level mean with Temperature = 150 and Pressure = 230. Construct a 95% confidence interval for D. Interpret your results.
 - (c) Carry out Tukey multiple comparisons if needed (use $\alpha = 0.05$) and draw conclusions about factor effects. If you find there is no need for multiple comparisons, justify your decision.

Class Level Information

Class temperature pressure		Levels 3 3	Value 150 200	160			
Dependent Va	riable: yi						
C	DE		um of		Mana Causasa	T 77-1	D > E
Source	DF		uares 777778		Mean Square 0.14222222		
Model	8		000000		0.1422222	8.00	0.0026
Error Corrected To	9		777778		0.01/////		
corrected ic	rtai 17	1.29	777770				
R-Square	Coeff Var	Ro	ot MSE	У	ields Mean		
0.876712	0.147474	0.	133333		90.41111		
		D		0.0			Б . П
Source					Mean Square		
temperature			0.301111 0.76777				
pressure	nroggiro				0.01722222		
cemperacure,	bressure	4	0.000000	509	0.01/22222	0.97	0.4700
Level of			yi	ields	5		
temperature	N	М	ean		Std Dev		
150	6	90.4	166667		0.20412415		
160	6	90.2	500000		0.26645825		
170	6	90.5	666667		0.29439203		
Level of				zielo	ds		
pressure	N	Mean			id Dev		
200	6	90.3666			.21602469		
215	6				.14719601		
230	6	90.1833	333	0	.19407902		
Level of	Level	of		-	yiel	lds	
temperature	pressu		N		Mean	Std Dev	
150	=		2		90.300000)
150	215		2	(90.6500000	0.07071068	3
150	230		2	(90.300000	0.14142136	
160	200		2	(90.2000000	0.14142136)
160	215		2	9	90.5500000	0.07071068	}
160	230		2	9	90.0000000	0.14142136)
170	200		2	(90.6000000	0.14142136	
170	215		2	9	90.8500000	0.07071068	}
170	230		2	(90.2500000	0.21213203	}

TABLE II Percentage Points of the t Distribution

va	0.40	0.25	0.10	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	0.325	1.000	3.078	6.314	12.706	31.821	63.657	127.32	318.31	636.62
2	0.289	0.816	1.886	2.920	4.303	6.965	9.925	14.089	23.326	31.598
3	0.277	0.765	1.638	2.353	3.182	4.541	5.841	7.453	10.213	12.924
4	0.271	0.741	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.267	0.727	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.265	0.727	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.263	0.711	1.415	1.895	2.365	2.998	3.499	4.019	4.785	5.408
8	0.262	0.706	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.261	0.703	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.260	0.700	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.260	0.697	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.259	0.695	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.259	0.694	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.258	0.692	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	0.258	0.691	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	0.258	0.690	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	0.257	0.689	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	0.257	0.688	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	0.257	0.688	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	0.257	0.687	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	0.257	0.686	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	0.256	0.686	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	0.256	0.685	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767
24	0.256	0.685	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	0.256	0.684	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	0.256	0.684	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	0.256	0.684	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	0.256	0.683	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	0.256	0.683	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	0.256	0.683	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	0.255	0.681	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551

In the second of the second of

v =Degrees of freedom.

TABLE V Percentage Points of the Studentized Range Statistic (Continued) $q_{0.05}(p,f)$

							115	Want of the state of	3 (1) - 1/1 (2)	p									
f	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	18.1	26.7	32.8	37.2	40.5	43.1	45.4	47.3	49.1	50.6	51.9	53.2	54.3	55.4	56.3	57.2	58.0	58.8	59.6
2	6.09	8.28	9.80	10.89	11.73	12.43	13.03	13.54	13.99	14.39	14.75	15.08	15.38	15.65	15.91	16.14	16.36	16.57	16.77
3	4.50	5.88	6.83	7.51	8.04	8.47	8.85	9.18	9.46	9.72	9.95	10.16	10.35	10.52	10.69	10.84	10.98	11.12	11.24
4	3.93	5.00	5.76	6.31	6.73	7.06	7.35	7.60	7.83	8.03	8.21	8.37	8.52	8.67	8.80	8.92	9.03	9.14	9.24
5	3.64	4.60	5.22	5.67	6.03	6.33	6.58	6.80	6.99	7.17	7.32	7.47	7.60	7.72	7.83	7.93	8.03	8.12	8.21
6	3.46	4.34	4.90	5.31	5.63	5.89	6.12	6.32	6.49	6.65	6.79	6.92	7.04	7.14	7.24	7.34	7.43	7.51	7.59
7	3.34	4.16	4.68	5.06	5.35	5.59	5.80	5.99	6.15	6.29	6.42	6.54	6.65	6.75	6.84	6.93	7.01	7.08	7.16
8	3.26	4.04	4.53	4.89	5.17	5.40	5.60	5.77	5.92	6.05	6.18	6.29	6.39	6.48	6.57	6.65	6.73	6.80	6.87
9	3.20	3.95	4.42	4.76	5.02	5.24	5.43	5.60	5.74	5.87	5.98	6.09	6.19	6.28	6.36	6.44	6.51	6.58	6.65
10	3.15	3.88	4.33	4.66	4.91	5.12	5.30	5.46	5.60	5.72	5.83	5.93	6.03	6.12	6.20	6.27	6.34	6.41	6.47
11	3.11	3.82	4.26	4.58	4.82	5.03	5.20	5.35	5.49	5.61	5.71	5.81	5.90	5.98	6.06	6.14	6.20	6.27	6.33
12	3.08	3.77	4.20	4.51	4.75	4.95	5.12	5.27	5.40	5.51	5.61	5.71	5.80	5.88	5.95	6.02	6.09	6.15	6.21
13	3.06	3.73	4.15	4.46	4.69	4.88	5.05	5.19	5.32	5.43	5.53	5.63	5.71	5.79	5.86	5.93	6.00	6.06	6.11
14	3.03	3.70	4.11	4.41	4.64	4.83	4.99	5.13	5.25	5.36	5.46	5.56	5.64	5.72	5.79	5.86	5.92	5.98	6.03
15	3.01	3.67	4.08	4.37	4.59	4.78	4.94	5.08	5.20	5.31	5.40	5.49	5.57	5.65	5.72	5.79	5.85	5.91	5.96
16	3.00	3.65	4.05	4.34	4.56	4.74	4.90	5.03	5.15	5.26	5.35	5.44	5.52	5.59	5.66	5.73	5.79	5.84	5.90
17	2.98	3.62	4.02	4.31	4.52	4.70	4.86	4.99	5.11	5.21	5.31	5.39	5.47	5.55	5.61	5.68	5.74	5.79	5.84
18	2.97	3.61	4.00	4.28	4.49	4.67	4.83	4.96	5.07	5.17	5.27	5.35	5.43	5.50	5.57	5.63	5.69	5.74	5.79
19	2.96	3.59	3.98	4.26	4.47	4.64	4.79	4.92	5.04	5.14	5.23	5.32	5.39	5.46	5.53	5.59	5.65	5.70	5.75
20	2.95	3.58	3.96	4.24	4.45	4.62	4.77	4.90	5.01	5.11	5.20	5.28	5.36	5.43	5.50	5.56	5.61	5.66	5.71
24	2.92	3.53	3.90	4.17	4.37	4.54	4.68	4.81	4.92	5.01	5.10	5.18	5.25	5.32	5.38	5.44	5.50	5.55	5.59
30	2.89	3.48	3.84	4.11	4.30	4.46	4.60	4.72	4.83	4.92	5.00	5.08	5.15	5.21	5.27	5.33	5.38	5.43	5.48
40	2.86	3.44	3.79	4.04	4.23	4.39	4.52	4.63	4.74	4.82	4.90	4.98	5.05	5.11	5.17	5.22	5.27	5.32	5.36
60	2.83	3.40	3.74	3.98	4.16	4.31	4.44	4.55	4.65	4.73	4.81	4.88	4.94	5.00	5.06	5.11	5.15	5.20	5.24

TABLE IX
F distribution (continued)

Column heading = numerator degrees of freedom

Row heading = denominator degrees of freedom

Points given are $f_{.05}$ points

For degrees of freedom > 120, use row or column 120

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				P[I	$F_{\gamma_1, \gamma_2} \leq f$] =	= .95			
2 18.513 19.000 19.164 19.247 19.296 19.329 19.353 19.354 19.354 19.354 19.354	/	1	2	3	4	5	6	7	8
18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2. 19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2. 20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2. 21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2. 22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2. 23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2. 24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2. 25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2. 26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2. 27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 33 34 35 36 36 36 37 38 38 38 38 38 38 38 38 38 38 38 38 38	18.513 10.128 7.709 6.608 5.987 5.591 5.318 5.117 4.965 4.844 4.747 4.667 4.600 4.543 4.494 4.451 4.414 4.381 4.351 4.325 4.301 4.279 4.260 4.242 4.225 4.210 4.183 4.171 4.160 4.183 4.171 4.160 4.149 4.139 4.130 4.121 4.113 4.105 4.098 4.091 4.085 4.034 4.001	19.000 9.552 6.944 5.786 5.143 4.737 4.459 4.256 4.103 3.982 3.885 3.806 3.739 3.682 3.555 3.522 3.555 3.522 3.493 3.467 3.443 3.385 3.369 3.355 3.328 3.316 3.305 3.328 3.316 3.328 3.276 3.252 3.252 3.252 3.252 3.252 3.253 3.252 3.253 3.253 3.276 3.252 3.252 3.253 3.252 3.253 3.255 3	19.164 9.277 6.591 5.409 4.757 4.347 4.066 3.863 3.708 3.587 3.490 3.113 3.441 3.287 3.239 3.197 3.160 3.127 3.049 3.028 3.072 3.049 2.991 2.975 2.960 2.947 2.934 2.922 2.911 2.901 2.892 2.892 2.892 2.852 2.859 2.859 2.859 2.859 2.859 2.859 2.859 2.859 2.859 2.859 2.859 2.875 2.859 2.859 2.875 2.859 2.875 2.859 2.875 2.876 2.859 2.875 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.877 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.877 2.876 2.877 2.876 2.876 2.877 2.876 2.876 2.876 2.876 2.876 2.876 2.877 2.876 2.877 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.876 2.877 2.877 2.877 2.876 2.876 2.877 2	19.247 9.117 6.388 5.192 4.534 4.120 3.838 3.633 3.478 3.357 3.259 3.179 3.112 3.056 3.007 2.965 2.928 2.895 2.866 2.840 2.817 2.796 2.776 2.759 2.743 2.728 2.714 2.701 2.690 2.659 2.650 2.641 2.634 2.626 2.619 2.612 2.606 2.557 2.525	19.296 9.013 6.256 5.050 4.387 3.972 3.687 3.482 3.326 3.204 3.106 3.025 2.958 2.901 2.852 2.810 2.773 2.740 2.711 2.685 2.661 2.640 2.621 2.603 2.587 2.572 2.558 2.534 2.523 2.512 2.503 2.494 2.485 2.477 2.470 2.463 2.456 2.449 2.460 2.368	19.329 8.941 6.163 4.950 4.284 3.866 3.581 3.374 3.217 3.095 2.996 2.915 2.848 2.790 2.741 2.661 2.661 2.628 2.599 2.573 2.549 2.528 2.490 2.474 2.459 2.421 2.432 2.421 2.439 2.380 2.372 2.380 2.349 2.342	19.353 8.887 6.094 4.876 4.207 3.787 3.500 3.293 3.135 3.012 2.913 2.832 2.764 2.577 2.657 2.614 2.577 2.514 2.488 2.464 2.423 2.405 2.338 2.373 2.359 2.346 2.323 2.324 2.227 2.226 2.225 2.225 2.229 2.226 2.225 2.229 2.226 2.225 2.229 2.226 2.225 2.229 2.226	238.882 19.371 8.845 6.041 4.818 4.147 3.726 3.438 3.230 3.072 2.948 2.767 2.699 2.641 2.548 2.510 2.477 2.4420 2.397 2.375 2.321 2.305 2.291 2.201 2.201 2.194 2.187 2.180 2.197 2.016

 $\begin{array}{l} {\rm TABLE~IX} \\ {\it F~distribution~(continued)} \end{array}$

γ_2	9	10	11	12	13	14	15	16
1	240.543	241.881	242.983	243.905	244.689	245.363	245.949	246.462
2	19.385	19.396	19.405	19.412	19.419	19.424	19.429	19.433
3	8.812	8.786	8.763	8.745	8.729	8.715	8.703	8.692
4	5.999	5.964	5.936	5.912	5.891	5.873	5.858	5.844
5	4.772	4.735	4.704	4.678	4.655	4.636	4.619	4.604
6	4.099	4.060	4.027	4.000	3.976	3.956	3.938	3.922
7	3.677	3.637	3.603	3.575	3.550	3.529	3.511	3.494
8	3.388	3.347	3.313	3.284	3.259	3.237	3.218	3.202
9	3.179	3.137	3.102	3.073	3.048	3.025	3.006	2.989
10	3.020	2.978	2.943	2.913	2.887	2.865	2.845	2.828
11	2.896	2.854	2.818	2.788	2.761	2.739	2.719	2.701
12	2.796	2.753	2.717	2.687	2.660	2.637	2.617	2.599
13	2.714	2.671	2.635	2.604	2.577	2.554	2.533	2.515
14	2.646	2.602	2.566	2.534	2.507	2.484	2.463	2.445
15	2.588	2.544	2.507	2.475	2.448	2.424	2.403	2.385
16	2.538	2.494	2.456	2.425	2.397	2.373	2.352	2.333
17	2.494	2.450	2.413	2.381	2.353	2.329	2.308	2.289
18	2.456	2.412	2.374	2.342	2.314	2.290	2.269	2.250
19	2.423	2.378	2.340	2.308	2.280	2.256	2.234	2.215
20	2.393	2.348	2.310	2.278	2.250	2.225	2.203	2.184
21	2.366	2.321	2.283	2.250	2.222	2.197	2.176	2.156
22	2.342	2.297	2.259	2.226	2.198	2.173	2.151	2.131
23	2.320	2.275	2.236	2.204	2.175	2.150	2.128	2.109
24	2.300	2.255	2.216	2.183	2.155	2.130	2.108	2.088
25	2.282	2.236	2.198	2.165	2.136	2.111	2.089	2.069
26	2.265	2.220	2.181	2.148	2.119	2.094	2.072	2.052
27	2.250	2.204	2.166	2.132	2.103	2.078	2.056	2.036
28	2.236	2.190	2.151	2.118	2.089	2.064	2.041	2.021
29	2.223	2.177	2.138	2.105	2.075	2.050	2.027	2.007
30	2.211	2.165	2.126	2.092	2.063	2.037	2.015	1.995
31	2.199	2.153	2.114	2.080	2.051	2.026	2.003	1.983
32	2.189	2.142	2.103	2.070	2.040	2.015	1.992	1.972
33	2.179	2.133	2.093	2.060	2.030	2.004	1.982	1.961
34	2.170	2.123	2.084	2.050	2.021	1.995	1.972	1.952
35	2.161	2.114	2.075	2.041	2.012	1.986	1.963	1.942
36	2.153	2.106	2.067	2.033	2.003	1.977	1.954	1.934
37	2.145	2.098	2.059	2.025	1.995	1.969	1.946	1.926
38	2.138	2.091	2.051	2.017	1.988	1.962	1.939	1.918
39	2.131	2.084	2.044	2.010	1.981	1.954	1.931 ·	1.911
40	2.124	2.077	2.038	2.003	1.974	1.948	1.924	1.904
50	2.073	2.026	1.986	1.952	1.921	1.895	1.871	1,850
60	2.040	1.993	1.952	1.917	1.887	1.860	1.836	1.815
120	1.959	1.910	1.869	1.834	1.803	1.775	1.750	1.728

TABLE IX
F distribution (continued)

16

246.462 19,433 8.692 5.844 4.604 3.922 3.494 3.202 2.989 2.828 2.701 2.599 2.515 2.445 2.385 2.333 2.289 2.250 2.215 2.184 2.156 2.131 2.109 2.088 2.069 2.052 2.036 2.021 2.007 1.995 1.983 1.972 1.961 1.952 1.942 1.934 1.926 1.918 1.911 1.904 1.850 1.815 1.728

71	17	18	19	20	21	22	23	24
1	246.917	247.322	247.685	248.012	248.308	248.577	248.824	249.051
2	19.437	19.440	19.443	19.446	19.448	19.450	19.452	19.454
3	8.683	8.675	8.667	8.660	8.654	8.648	8.643	8.639
4	5.832	5.821	5.811	5.803	5.795	5.787	5.781	5.774
5	4.590	4.579	4.568	4.558	4.549	4.541	4.534	4.527
6	3.908	3.896	3.884	3.874	3.865	3.856	3.849	3.841
7	3.480	3.467	3,455	3.445	3.435	3.426	3.418	3.411
8	3.187	3.173	3.161	3.150	3.140	3.131	3.123	3.115
9	2.974	2.960	2.948	2.936	2.926	2.917	2.908	2.900
10	2.812	2.798	2.785	2.774	2.764	2.754	2.745	2.73
11	2.685	2.671	2.658	2.646	2.636	2.626	2.617	2.609
12	2.583	2.568	2.555	2.544	2.533	2.523	2.514	2.50
13	2.499	2.484	2.471	2.459	2.448	2.438	2.429	2.42
14		2.413	2,400	2.388	2.377	2.367	2.357	2.34
15	2.368	2.353	2.340	2.328	2.316	2.306	2.297	2.28
16	2.317	2.302	2.288	2.276	2.264	2.254	2.244	2.23
17	2.272	2.257	2.243	2.230	2.219	2.208	2.199	2.19
18	2.233	2.217	2.203	2.191	2.179	2.168	2.159	2.15
19	2.198	2.182	2.168	2.156	2.144	2.133	2.123	2.11
20	2.198	2.151	2.137	2.124	2.112	2.102	2.092	2.08
21	2.139	2.123	2.109	2.096	2.084	2.073	2.063	2.05
22	2.114	2.098	2.084	2.071	2.059	2.048	2.038	2.02
23	2.091	2.075	2.061	2.048	2.036	2.025	2.014	2.00
24	2.070	2.054	2.040	2.027	2.015	2.003	1.993	1.98
25	2.070	2.035	2.021	2.007	1.995	1.984	1.974	1.96
26	2.031	2.018	2.003	1.990	1.978	1.966	1.956	1.94
27	2.034	2.002	1.987	1.974	1.961	1.950	1.940	1.93
28	2.018	1.987	1.972	1.959	1.946	1.935	1.924	1.9
29	1.989	1.973	1.958	1.945	1.932	1.921	1.910	1.90
30	1.989	1.960	1.945	1.932	1.919	1.908	1.897	1.83
31	1.965	1.948	1.933	1.920	1.907	1.896	1.885	1.8
32	1.953	1.937	1.922	1.908	1.896	1.884	1.873	1.8
33	1.933	1.926	1.911	1.898	1.885	1.873	1.863	1.8
34	1.933	1.917	1.902	1.888	1.875	1.863	1.853	1.8
35	1.924	1.907	1.892	1.878	1.866	1.854	1.843	1.8
36	1.915	1.899	1.883	1.870	1.857	1.845	1.834	1.8
37	1.913	1.890	1.875	1.861	1.848	1.837	1.826	1.8
38	1.899	1.883	1.867	1.853	1.841	1.829	1.818	1.8
38 39	1.899	1.875	1.860	1.846	1.833	1.821	1.810	1.8
39 40	1.892	1.868	1.853	1.839	1.826	1.814	1.803	1.7
	1.831	1.814	1.798	1.784		1.759		1.7
50	1.831	1.778	1.763	1.748	1.735			1.7
60 120	1.796	1.690	1.674		1.645			1.6