Statistics Prelim Exam Part 2 - Statistical Methods

10:00 am - 12:30 pm, Wednesday, August 20, 2025

1. Suppose X_1, \ldots, X_n is a random sample from Uniform $(\theta, \theta+1)$, where $\theta \in (-\infty, \infty)$ and it is unknown. Assume a prior distribution for θ given by the probability density function as,

$$\pi(\theta) = \frac{1}{2} \exp(-|\theta|), \quad \theta \in (-\infty, \infty).$$

- (a) Find the posterior distribution of θ , given $(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n)$, i.e., $\pi(\theta | x_1, x_2, \dots, x_n)$.
- (b) Find the Bayes estimator δ of θ under the loss function as $L(\theta, \delta) = (\theta \delta)^2$.
- 2. Let X_1, \ldots, X_n be a random sample from the inverse Gaussian distribution (InvGaussian (μ, λ)) with the probability density function as

$$f(x|\mu,\lambda) = \sqrt{\frac{\lambda}{2\pi x^3}} \exp\left[-\frac{\lambda}{2\mu^2 x}(x-\mu)^2\right], \quad x > 0, \ \mu,\lambda > 0.$$

- (a) Show that this density constitutes an exponential family.
- (b) Find the moment generating function m(t) of \bar{X} , where $\bar{X} = \sum_{i=1}^{n} X_i/n$. Clearly specify its distribution with the related parameters.
- (c) Show that there exists a uniformly most powerful (UMP) test for testing $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ when λ is known. Clearly derive the test giving the test statistic and the exact rejection region for a size α test.
- 3. Let X_1, \ldots, X_n be a random sample from the exponential distribution $\mathcal{E}(a, b)$ with parameters b > 0 and $a \in (-\infty, +\infty)$ with the probability density function as

$$f(x) = \frac{1}{b} \exp\left[-\frac{(x-a)}{b}\right], \quad x \ge a.$$

- (a) Assume that b is known. Show the distribution of $n[X_{(1)} a]/b$ is $\mathcal{E}(0,1)$ and confirm that the uniformly minimum variance unbiased estimator (UMVUE) of a is $X_{(1)} (b/n)$, where $X_{(1)}$ is the minimum order statistic.
- (b) Assume that b is known. Find the UMVUE of $P(X_1 \ge t)$ and $\frac{d}{dt}P(X_1 \ge t)$ for a fixed t > 0, where X_1 is arbitrarily the first random variable in the random sample.
- (c) Assume a is known and b is unknown. Find the maximum likelihood estimator g(b) of $g(b) = P(X_1 \le 2a)$. Clearly identify the asymptotic distribution of $\sqrt{n}(g(b) g(b))$ as $n \to \infty$.
- (d) Assume both b and a are unknown. Find a likelihood ratio test of size α for testing $H_0: b = b_0$ versus $H_1: b \neq b_0$, giving the test statistic and the exact rejection region.

Hint: For Part (d), you can use the following result without proving it:

When both b and a are unknown, $X_{(1)}$ and $\sum [X_i - X_{(1)}]$ are jointly sufficient and complete. They are independently distributed as

$$n[X_{(1)} - a]/b \sim \mathcal{E}(0, 1),$$

$$2\sum_{i=1}^{n} [X_i - X_{(1)}]/b \sim \chi^2_{2(n-1)}.$$