Statistics Qualifying Exam

9:00 am - 1:00 pm, Monday, May 2, 2016

1. If Y_1 and Y_2 have a joint distribution given by

$$f(y_1, y_2) = \begin{cases} \frac{1}{2}y_1y_2, & 0 \le y_2 \le y_1 \le 2; \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find the marginal distributions of Y_1 and Y_2 .
- (b) Find the conditional distribution of Y_2 given $Y_1 = y_1$.
- (c) Find the values of $E(Y_2|Y_1 = 1)$ and $Var(Y_2|Y_1 = 1)$.
- (d) What is the density of $U = Y_1 Y_2$?
- 2. Suppose that X_1, X_n is a random sample from $\text{Uniform}(\theta, 2\theta)$ distribution, where $\theta > 0$ is an unknown parameter.
 - (a) Find the maximum likelihood estimator (MLE) for θ .
 - (b) Prove that the MLE is consistent.
- 3. Let X_1, \ldots, X_n is a random sample from a distribution with pdf as $f(x|\theta) = \theta^{-1} \exp(-x/\theta), x \ge 0, \theta > 0$.
 - (a) Find the MLE of $P(X \leq 2)$.
 - (b) Find the minimum variance unbiased estimator (MVUE) of $P(X \le 2)$.
 - (c) Derive the exact likelihood ratio test for the following hypothesis

 $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.

Please carefully specify the likelihood ratio Λ , the test statistic, the sampling distribution of the test statistic under the null hypothesis, and the decision rules of a size α test.

- (d) For the decision rule derived in Part (b), obtain the distribution of the test statistic under a general alternative (that is $H_1: \theta \neq \theta_0$) and use it to obtain the power function of the test.
- 4. Let X_1, \ldots, X_n be a random sample from the pdf $f(x|\theta) = \exp[-(x-\theta)]$, where $-\infty < \theta < \infty$ and $x \ge \theta$.
 - (a) Find the minimal sufficient statistic for θ .
 - (b) Let $Y_1 < Y_2 < \cdots < Y_n$ be the ordered sample, and define $R_i = Y_n Y_i$, $i = 1, \ldots, n-1$. Show that the set (R_1, R_2, \ldots, R_n) is ancillary for θ .
 - (c) Assume it is given that $Y_1 = \min_i X_i$ is a complete sufficient statistic. Show that Y_1 and $S^2 = \sum_{i=1}^n (X_i \bar{X})^2 / (n-1)$ are independent, where $\bar{X} = \sum_{i=1}^n X_i / n$.
 - (d) Now prove the condition given in Part (c). That is, show that $Y_1 = \min_i X_i$ is a complete sufficient statistic.

5. The following is part of ANOVA table for a simple linear regression model

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i,$$

where ε_i 's are i.i.d. from $N(0, \sigma^2)$, i = 1, ..., n, and n is the number of observations. (No need to complete the table.)

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	***	*****	252378	105.88	<.0001
Error	23	*****	*****		
Corrected Total	***	*****			

- (a) Compute the coefficient of determination R^2 .
- (b) Assume that we now know the least square estimate of β_1 is $b_1 = 3.57$. Construct a two-sided *t*-test of whether or not $\beta_1 = 3$. State the null and alternative hypotheses, the value of the test statistic, the sampling distribution under the null hypothesis and the decision rule.
- 6. A gardener is interested in studying the relationship between fertilizer and tomato yield. The gardener has two gardens (1 and 2). He divides each into 9 plots. Three fertilizer application rates (3, 5, and 7 units/acre) are assigned to the plots in garden 1 in a completely randomized fashion. The same three fertilizer application rates (3, 5, and 7 units/acre) are assigned to the plots in garden 2 in a completely randomized fashion. Thus there are three plots for each combination of garden and fertilizer application rate. After some initial analyses, the gardener decides to base his analysis on the following SAS code and output.
 - (a) Note that rate was not included in the class statement. What would the Model and Error DF change to if rate were included in the class statement? That is, complete the following tables by filling in the missing values for DF (you only need to provide DF for ???, but do not need to calculate any of the Sum Squares).

		Sum of
Source	DF	Sum Squares
Model	???	
Error	???	
Corrected Total	???	
Source garden rate rate*garden	DF ??? ??? ???	Type I SS

- (b) Estimate the equation of the regression line relating yield to fertilizer application rate in garden 1.
- (c) Estimate the equation of the regression line relating yield to fertilizer application rate in garden 2.
- (d) Is there a significant difference between the slopes of the two regression lines? To get full credits, give an appropriate test statistic, *p*-value, and conclusion, using $\alpha = 0.05$.
- (e) Suppose the gardener were to apply 7 units of fertilizer per acre to all plots in both gardens. Which garden would have the higher expected yield?

<pre>proc glm; class garden; model yield=garden rate garden*rate / solution; run;</pre>										
The GLM Procedure										
Dependent Variab	le: yie	ld								
		Su	um of							
Source	DF	Squ	lares	Mean S	quare	F	Value	Pr > F		
Model	3	58.8888	88889	19.629	62963		27.33	<.0001		
Error	14	10.0555	5556	0.718	25397					
Corrected Total	17	68.9444	4444							
Source	DF	Туре	I SS	Mean S	quare	F	Value	Pr > F		
garden	1	2.7222	22222	2.722	22222		3.79	0.0719		
rate	1	52.0833	3333	52.083	33333		72.51	<.0001		
rate*garden	1	4.0833	3333	4.083	33333		5.69	0.0318		
			Standard	ł						
Parameter	Estima	ate	Erroi	c t	Value		Pr > t			
Intercept	-1.11	В	0.9099380)3	-1.22		0.2422			
garden 1	3.69	В	1.2868467	70	2.87		0.0123			
garden 2	0.00	В	•		•		•			
rate	1.33	В	0.1729949	94	7.71		<.0001			
rate*garden 1	-0.58	В	0.2446517	79	-2.38		0.0318			
rate*garden 2	0.00	В	•		•		•			

7. An experiment is conducted to study the effects of loading frequencies (Frequency) and environmental conditions (Environment) on fatigue crack growth at a constant 22 MPa stress for a particular material. The data from this experiment are shown below (the response is crack growth rate):

		Environment	
Frequency	1: Air	$2: H_2O$	$3: SaltH_2O$
1	2.29, 2.47, 2.12	2.86, 3.03, 2.73	4.93, 4.75, 5.06
2	3.15, 2.88, 2.56	4.00, 4.44, 4.70	3.10, 3.24, 3.98
3	2.24, 2.71, 2.81	4.00, 4.30, 3.20	4.86, 4.26, 5.20

Some summary statistics are give below.

grand mean:	3.551		
frequency	MEAN	environment	MEAN
1	3.360	1	2.581
2	3.561	2	3.696
3	3.731	3	4.376
frequency en	nvironment	MEAN	
1	1	2.293	
1	2	2.873	
1	3	4.913	
2	1	2.863	
2	2	4.380	
2	3	3.440	
3	1	2.587	
3	2	3.833	
3	3	4.773	

Suppose the following statistical model is used to fit the data.

 $Y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \epsilon_{ijk}; k = 1, 2, 3$

where $\tau_i (i = 1, 2, 3)$ and $\beta_j (j = 1, 2, 3)$ are the main effects of frequency, the main effects of environment, respectively, and $(\tau\beta)_{ij}$ are their interactions. For parameter estimation, we impose the following constraints: $\sum_i \tau_i = \sum_j \beta_j = \sum_i (\tau\beta)_{ij} = \sum_j (\tau\beta)_{ij} = 0.$

- (a) Calculate the estimates of τ_1, τ_2, τ_3 and $(\tau\beta)_{23}$.
- (b) Calculate the sum of squares due to frequency.

(c) The ANOVA of the data was done in SAS and the output is shown. Notice that some quantities are removed. Test if the main effects of frequency are significant and if the interactions of frequency and environment are significant (using $\alpha = 5\%$).

Dependent (Variable:	crack				
		Sum of				
Source	DF	Squares	Mean Square	F Value	Pr > F	
Model	8	22.719	2.840	22.11	<.0001	
Error	18	2.312	0.128			
Coed Total	26	25.031				
Source		DF	Type I SS	Mean Square	F Value	Pr > F
frequency		*	****	****	****	****
environmen	t	2	14.773	7.387	57.51	<.0001
frequency*	environme	nt *	****	****	****	****

- (d) Calculate the critical difference (CD) for the treatment pairwise comparison using Tukey's method. Report the results for the following (and only the following) pairs: (1, 1) versus (1,3); (2, 2) versus (3, 2).
- 8. An experiment was run to determine whether four specific temperatures affect the production of a certain type of chemical compound. The experiment led to the following data. The response is the amount of the chemical compound produced over a period of time.

Temperature	Response					Mean $\bar{Y}_{i.}$	St.D. s_i
100	8.71	10.47	9.62	11.55	10.25	10.12	1.05
125	24.12	25.23	26.08	20.30	21.15	23.38	2.54
150	30.37	31.14	35.62	30.19	27.03	30.87	3.09
175	28.24	24.15	22.02	26.46	27.44	25.66	2.55

- (a) Generate (approximately) the plot of log St.D. ($log s_i$) versus log Mean ($log \bar{Y}_i$) by hand.
- (b) Based on your plot, is the constant variance assumption for ANOVA valid? What remedy you can recommend? Derive the remedy explicitly.

The modified data are given below.

Temperature	Transformed Response					Mean $\bar{Y}_{i.}$	St.D. s_i
100	2.16	2.35	2.26	2.45	2.33	2.310	0.1079
125	3.18	3.23	3.26	3.01	3.05	3.146	0.1106
150	3.41	3.44	3.57	3.41	3.30	3.426	0.0966
175	3.34	3.18	3.09	3.28	3.31	3.240	0.1032

(c) It is known that SST = 3.839. Choose an appropriate model, construct the ANOVA table, and test if the temperatures have different effects on the transformed response.

- (d) What is the estimate for τ_1 (the treatment effect at temperature 100) under the constraint $\sum_i \tau_i = 0$?
- (e) Let μ_1, μ_2, μ_3 and μ_4 be the treatment means at temperatures 100, 125, 150 and 175, respectively, and let $L = \mu_1 2\mu_2 + \mu_3$. What is the estimate for L?
- (f) Test $H_0: L = 0$ vs $H_1: L \neq 0$.
- (g) One decides to use the contrasts based on orthogonal polynomials to further model the relationship between temperature and the transformed response. Part of the SAS code and output is given below. Fill in the DF, Contrast SS, Mean Square and F Value for the linear contrast.

contrast	'linea	r' temperature	-3 -1 1 3;		
contrast	'quadra	atic' temperature	1 -1 -1 1;		
contrast	'cubic	' temperature	-1 3 -3 1;		
Contrast	DF	Contrast SS	Mean Square	F Value	Pr > F
linear	*	*****	*****	*****	<.0001
quadratio	c 1	1.30560500	1.30560500	119.07	<.0001
cubic	1	0.00202500	0.00202500	0.18	0.6731