Prelim Exam

Linear Models

August 2022

Preliminary Examination: LINEAR MODELS

Answer all questions and show all work. Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points.

1. Let Y be an *n*-dimensional response vector. X_1 and X_2 are $n \times p$ and $n \times q$ matrices, respectively. Suppose that the correct model is:

$$\mathbf{Y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \mathbf{X}_2 \boldsymbol{\beta}_2 + \boldsymbol{\varepsilon},$$

where $E(\varepsilon) = 0$ and $var(\varepsilon) = \sigma^2 I$. Suppose that we fit the following *incorrect* model:

$$\mathbf{Y} = \mathbf{X}_1 \boldsymbol{\beta}_1 + \boldsymbol{\varepsilon}$$

with the same assumptions for ε . Assume that X_1 is full rank.

a. Consider the ordinary least squares (OLS) estimator $\hat{\beta}_1$ of β_1 under the correct model. Let $\tilde{\beta}_1$ denote the OLS estimator of β_1 when we fit the *incorrect* model. Assuming in part (a) that $\beta_2 = 0$, compare $\hat{\beta}_1$ and $\tilde{\beta}_1$ in terms of bias and variance.

Hint:

$$\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B'} & \mathbf{C} \end{pmatrix}^{-1} = \begin{pmatrix} \mathbf{A}^{-1} & \mathbf{0} \\ \mathbf{0'} & \mathbf{0} \end{pmatrix} + \begin{pmatrix} -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{I} \end{pmatrix} (\mathbf{C} - \mathbf{B'}\mathbf{A}^{-1}\mathbf{B})^{-1} (-\mathbf{B'}\mathbf{A}^{-1} \mathbf{I})$$

b. Assume in part (b) that $\varepsilon \sim \mathcal{N}_n(\mathbf{0}, \sigma^2 \mathbf{I})$. When we fit the incorrect model and would like to test $H_0: \beta_1 = \mathbf{0}$ vs. $H_a: \beta_1 \neq \mathbf{0}$, suppose we use the usual F test statistics assuming the *incorrect* model:

$$F = \frac{SSM/p}{SSE/(n-p)}.$$

Give the expressions of the model sum of squares (SSM) and residual sum of squares (SSE). What are the actual distributions of SSM and SSE under H_0 (and the correct model), respectively? Comment on the validity of this F test for H_0 : $\beta_1 = 0$.

2. Consider the normal linear model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ where \mathbf{X} is an $n \times p$ design matrix with full rank and $\boldsymbol{\varepsilon} \sim \mathcal{N}_p(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. Let $\hat{\boldsymbol{\beta}}$ be the ordinary least squares (OLS) estimator of $\boldsymbol{\beta}$. The ridge regression estimator $\hat{\boldsymbol{\beta}}_R(\lambda)$ of $\boldsymbol{\beta}$ is the vector-value of $\boldsymbol{\beta}$ that minimizes

$$Q(\boldsymbol{\beta}) = (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}' \boldsymbol{\beta},$$

where $\lambda > 0$ is a fixed real number.

- a. Find an expression for $\hat{\boldsymbol{\beta}}_R(\lambda)$. Show that you can write $\hat{\boldsymbol{\beta}}_R(\lambda) = \mathbf{W}_{\lambda}\hat{\boldsymbol{\beta}}$ for some matrix \mathbf{W}_{λ} that depends on λ and give the explicit expression for \mathbf{W}_{λ} .
- b. Find the mean, bias and variance of $\hat{\boldsymbol{\beta}}_{B}(\lambda)$.
- c. Show that $Var(\hat{\boldsymbol{\beta}}_R(\lambda)) < Var(\hat{\boldsymbol{\beta}})$ in the sense that $Var(\hat{\boldsymbol{\beta}}) Var(\hat{\boldsymbol{\beta}}_R(\lambda))$ is a positive definite matrix. Hint: You may use $\mathbf{X}'\mathbf{X} = \mathbf{PDP}'$ where **D** is a diagonal matrix and **P** is an orthogonal matrix.
- d. Find the mean squared error of $\hat{\boldsymbol{\beta}}_{R}(\lambda)$, $MSE(\lambda) = E\{(\hat{\boldsymbol{\beta}}_{R}(\lambda) \boldsymbol{\beta})'(\hat{\boldsymbol{\beta}}_{R}(\lambda) \boldsymbol{\beta})\}$.
- e. Assuming now that $\mathbf{X}'\mathbf{X} = d\mathbf{I}_p$ where d is a fixed constant, find the optimum value of λ that minimizes the $MSE(\lambda)$.
- 3. This problem concerns the situation where doubts are casted on the stability assumption of the regression coefficient and the independence assumption of the errors. Consider the following change-point model:

$$Y_i = \mu_i + \epsilon_i, \ i = 1, \dots, n,$$

where

$$\mu_i = \begin{cases} \beta_1, & \text{if } i \le n/2; \\ \beta_2, & \text{otherwise.} \end{cases}$$

Suppose that we only observe Y_1, \ldots, Y_n . For simplicity, assume that the sample size is even, namely n = 2m for some integer m > 0. Let $(\hat{\beta}_1, \hat{\beta}_2)$ be the ordinary least squares (OLS) estimator of (β_1, β_2) .

a. Find the OLS estimator $(\hat{\beta}_1, \hat{\beta}_2)$.

Assume that the errors satisfy

$$\epsilon_i = e_i - a e_{i-1}, \ i = 1, \dots, n,$$

where $a \in \mathcal{R}$ is a parameter controlling the dependence strength, and $e_k, k = 0, 1, ..., n$, are independent normal random variables with mean zero and variance $\sigma^2 > 0$.

- b. Assume that a = 0. Find the joint distribution of $(\hat{\beta}_1, \hat{\beta}_2)$. Are $\hat{\beta}_1$ and $\hat{\beta}_2$ independent in this case? Howe does the variance of $\hat{\beta}_1$ change when $n \to \infty$ (for example, whether it decreases to zero linearly in *n*, quadratically or at some other rate)?
- c. Assume that a = 0. Find an unbiased estimator of $\hat{\sigma}^2$ of σ^2 and derive a test for:

$$H_0: \ \beta_1 - \beta_2 = 0 \text{ vs } H_a: \beta_1 - \beta_2 \neq 0$$

You need to specify the test statistic and its distribution under the null hypothesis.

- d. Now assume that a = 1. Find the joint distribution of $(\hat{\beta}_1, \hat{\beta}_2)$. Are $\hat{\beta}_1$ and $\hat{\beta}_2$ independent in this case? How does the variance of $\hat{\beta}_1$ change when $n \to \infty$ in this case (for example whether it decreases to zero linearly in *n*, quadratically or at some other rate)? Compare your result with the one in part (b) and comment on the effect of dependence among the errors. Is dependence always a "bad" thing?
- e. Now suppose that 0 < a < 1. Find the distribution of $\hat{\beta}_1$. How does the variance of $\hat{\beta}_1$ change when $n \to \infty$ (for example whether it decreases to zero linearly in *n*, quadratically or at some other rate)? Compare your result with the ones in parts (b) and (d) and comment.