## Preliminary Examination: LINEAR MODELS

Answer all questions and show all work.

1. Consider a completely randomized experiment in which a total of 10 rats were randomly assigned to 5 treatment groups with 2 rats in each treatment group. Suppose the different treatments correspond to different doses of a drug in milliliters per gram of body weight as indicated in the following table.

| Treatment           | 1 | 2 | 3 | 4 | 5  |  |
|---------------------|---|---|---|---|----|--|
| Dose of Drug (mL/g) | 0 | 2 | 4 | 8 | 16 |  |

Suppose for i = 1, ..., 5, and j = 1, 2,  $Y_{ij}$  denotes the weight at the end of the study of the jth rat from the i treatment group. Further more, suppose

$$Y_{ij} = \mu_i + \epsilon_{ij},$$

where  $\mu_1, \ldots, \mu_5$  are unknown parameters and the  $\epsilon_{ij}$  terms are i.i.d.  $N(0, \sigma^2)$  for some unknown parameter  $\sigma^2 > 0$ . Use the R code and partial output provided with this exam to give numerical answer the following questions.

- a. Provide the BLUE of  $\mu_2$ .
- b. Determine the standard error of the BLUE of  $\mu_2$ .
- c. Conduct a test for  $H_0: \mu_1 = \mu_2$  vs.  $H_a: \mu_1 \neq \mu_2$ . Provide a test statistic, the distribution of the test statistic under  $H_0$  and  $H_a$ , respectively.
- d. Does a simple linear regression model with body weight as a response and dose as a quantitative explanatory variable fit these data adequately? Provide a matrix  $\mathbf{A}$  and a vector  $\mathbf{c}$  so that the null hypothesis of the test can be written as  $H_0: \mathbf{A}'\boldsymbol{\beta} = \mathbf{c}$ , where  $\boldsymbol{\beta} = (\mu_1, \dots, \mu_5)'$ . Also provide a test statistic, its distribution under  $H_0$ .

```
> dose=as.factor(d)
> o1=lm(y~dose)
> summary(o1)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                          6.576 53.372 4.37e-08 ***
(Intercept) 351.000
             -10.000
                          9.301 -1.075 0.331406
dose2
dose4
                          9.301 -0.645 0.547277
              -6.000
dose8
             -17.000
                          9.301 -1.828 0.127119
                          9.301 -7.580 0.000634 ***
dose16
             -70.500
> anova(o1)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value Pr(>F)
dose
             6505.6
              432.5
Residuals
> is.numeric(d)
[1] TRUE
> o2=lm(y\sim d)
> anova (o2)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value Pr(>F)
             5899.6
Residuals
             1038.5
> o3=lm(y\sim d+dose)
> anova (o3)
Analysis of Variance Table
Response: y
          Df Sum Sq Mean Sq F value
                                       Pr(>F)
                                     0.0004245 ***
d
                                     0.1907591
dose
Residuals
```

> plot(d,y) #See plot on the back of this page.

2. Let  $Y_0, Y_1, \dots Y_n$  follow a general linear model,

$$Y_i = \mathbf{x}_i' \boldsymbol{\beta} + \delta_i; i = 0, 1, \dots, n$$

where the vector  $\boldsymbol{\beta}$  is p-dimensional;  $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n$  are known covariates, and  $\delta_0, \delta_1, \dots, \delta_n$  are mean-zero error terms. Write  $\mathbf{Y} \equiv (Y_1, \dots, Y_n)'$ ,  $\mathbf{X} \equiv (\mathbf{x}_1, \dots, \mathbf{x}_n)'$ , and  $\boldsymbol{\delta} \equiv (\delta_1, \dots, \delta_n)'$ . Notice that  $Y_0$  is NOT part of  $\mathbf{Y}$  and plays a special role in this question.

Define

$$\Sigma_{YY} = var(\mathbf{Y}), \ \boldsymbol{\sigma}_{Y_0} = cov(\mathbf{Y}, Y_0), \ \sigma_{00} = var(Y_0).$$

The parameters  $\beta$  are unknown, but assume that  $\Sigma_{YY}$ ,  $\sigma_{Y_0}$ , and  $\sigma_{00}$  are known. Suppose that Y is observed with measurement error and the data are:

$$Z = Y + \varepsilon$$
.

where  $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n)'$  is independent of Y, and  $\varepsilon_1, \dots, \varepsilon_n$  are *i.i.d.* random variables with mean zero and known variance  $\sigma_e^2$ . Notice that there is NO observation  $Z_0$ . We wish to make inference on  $Y_0$  and  $\beta$  based on the data Z using only first- and second-moment assumptions. (In the case of  $Y_0$  we call the inference prediction, and in the case of  $\beta$  we call the inference estimation.)

- a. Derive the expression for  $\Sigma_{ZZ} \equiv var(\mathbf{Z})$  in terms of the parameters defined above.
- b. We first consider inference on  $\beta$  (i.e., estimation).
- b-i. Give the Generalized Least Squares (GLS) estimator  $\hat{\beta}_{GLS}$ . [Assume that all necessary matrix inverses exist.]
- b-ii. Consider any linear estimator,

$$\hat{\boldsymbol{\beta}}(\mathbf{A}) \equiv \mathbf{AZ},$$

where A is a  $p \times n$  matrix. Now define the  $p \times p$  matrix,

$$Q(\mathbf{A}) \equiv E\{(\boldsymbol{\beta} - \mathbf{AZ})(\boldsymbol{\beta} - \mathbf{AZ})'\}.$$

We wish to minimize  $\mathbf{k}'Q(\mathbf{A})\mathbf{k}$  with respect to  $\mathbf{A}$  for any given  $\mathbf{k}$ , where  $\mathbf{A}$  is restricted to satisfy  $E(\hat{\boldsymbol{\beta}}(\mathbf{A})) = \boldsymbol{\beta}$ . Show that  $\hat{\boldsymbol{\beta}}_{GLS}$  is a solution to this optimization problem. [Hint: Minimize  $\mathbf{k}'Q(\mathbf{A})\mathbf{k}$  with respect to  $\mathbf{a} \equiv \mathbf{A}'\mathbf{k}$ .]

- c. We now consider inference on  $Y_0$  (i.e., prediction)
- c-i. Assume  $\beta$  is known in this part (this assumption will be relaxed in the next part). Define the loss function,

$$L(Y_0, \hat{Y}_0) = (\hat{Y}_0 - Y_0)^2.$$

The optimal linear predictor is obtained by minimizing  $E(L(Y_0, \hat{Y}_0))$ ; you may assume that it is given by,

$$\hat{Y}_0(\boldsymbol{\beta}) = \mathbf{x}_0' \boldsymbol{\beta} + \boldsymbol{\sigma}_{Y_0}' \boldsymbol{\Sigma}_{ZZ}^{-1} (\mathbf{Z} - \mathbf{X} \boldsymbol{\beta}).$$

Give an expression for the mean squared prediction error,

$$M_1(\boldsymbol{\beta}) \equiv E(\hat{Y}_0(\boldsymbol{\beta}) - Y_0)^2.$$

How does  $M_1(\beta)$  vary with  $\beta$ ?

c-ii. In reality,  $\beta$  is unknown. One way to deal with this is to "plug in" an estimator,  $\hat{\beta}(\mathbf{A}) \equiv \mathbf{AZ}$ , to yield the estimated predictor,  $\hat{Y}_0(\hat{\beta}(\mathbf{A}))$ , and the estimated mean squared prediction error,  $M(\hat{\beta}(\mathbf{A}))$ . Show that  $\hat{Y}_0(\hat{\beta}(\mathbf{A}))$  is of the form,

$$\mathbf{b}(\mathbf{A})'\mathbf{Z},$$

and give a formula for  $\mathbf{b}(\mathbf{A})$ . Also give a formula for  $M_1(\hat{\boldsymbol{\beta}}(\mathbf{A}))$ .

d. Now,  $M_1(\hat{\boldsymbol{\beta}}(\mathbf{A}))$  does not account for the variability in  $\hat{\boldsymbol{\beta}}(\mathbf{A})$ . From (c)-ii, recall that  $\hat{Y}_0(\hat{\boldsymbol{\beta}}(\mathbf{A})) = \mathbf{b}(\mathbf{A})'\mathbf{Z}$ , where  $\hat{\boldsymbol{\beta}}(\mathbf{A}) = \mathbf{A}\mathbf{Z}$ . It is not hard to show (but you do NOT have to show it here) that any linear unbiased predictor can be written as  $\hat{Y}_0(\hat{\boldsymbol{\beta}}(\mathbf{A}))$  where  $\hat{\boldsymbol{\beta}}(\mathbf{A})$  is an unbiased estimator of  $\boldsymbol{\beta}$ . You may assume that (no need to prove)

$$M_2(\mathbf{A}) \equiv E(\mathbf{b}(\mathbf{A})'\mathbf{Z} - Y_0)^2 = \sigma_{00} - \sigma'_{Y_0} \Sigma_{ZZ}^{-1} \sigma_{Y_0} + (\mathbf{x}_0 - \mathbf{X}' \Sigma_{ZZ}^{-1} \sigma_{Y_0})' Q(\mathbf{A}) (\mathbf{x}_0 - \mathbf{X}' \Sigma_{ZZ}^{-1} \sigma_{Y_0}).$$

- d-i. Use this to find the Best Linear Unbiased Predictor (BLUP),  $Y_0^*$ , of  $Y_0$ .
- d-ii. Derive the expression for  $M^* \equiv E[(Y_0^* Y_0)^2]$ . Compare the two expressions,  $M_1(\hat{\beta}_{GLS})$  and  $M^*$ .
- 3. In regularized regression on p predictors, we seek an estimator  $\hat{\beta}_R(\Lambda)$  in the model

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ E(\boldsymbol{\varepsilon}|\mathbf{X}) = \mathbf{0}, \ var(\boldsymbol{\varepsilon}|\mathbf{X}) = \sigma^2 \mathbf{I}_n,$$

that minimizes,

$$SS_{\Lambda}(\beta) = (\mathbf{Y} - \mathbf{X}\beta)'(\mathbf{Y} - \mathbf{X}\beta) + \beta'\Lambda'\Lambda\beta.$$

a. Show that the least-squares estimator for  $\beta$  in the augmented model (with artificial observations)

$$\left[egin{array}{c} \mathbf{Y} \ \mathbf{0} \end{array}
ight] = \left[egin{array}{c} \mathbf{X} \ \mathbf{\Lambda} \end{array}
ight] oldsymbol{eta} + \left[egin{array}{c} oldsymbol{arepsilon} \ oldsymbol{arepsilon} \end{array}
ight]$$

is  $\hat{\boldsymbol{\beta}}_R(\boldsymbol{\Lambda}) \equiv \mathop{argmin}_{\boldsymbol{\beta}} SS_{\boldsymbol{\Lambda}}(\boldsymbol{\beta})$  and give the expression for it.

For parts (b)-(d), assume that  $\mathbf{X} \equiv [\mathbf{x}_1, \cdots, \mathbf{x}_p]$  is *orthogonal* and that we now focus on one regularizing parameter  $\lambda$  and set  $\mathbf{\Lambda} = \sqrt{\lambda} \, \mathbf{I}_p$ . Denote  $\hat{\boldsymbol{\beta}}_R(\lambda) \equiv \hat{\boldsymbol{\beta}}_R(\boldsymbol{\Lambda})$ .

b. If  $\hat{\beta}$  is the least-squares estimate for the model, show that

$$(\hat{\boldsymbol{\beta}}_{R}(\boldsymbol{\Lambda}))_{i} = s_{i}(\lambda)\hat{\beta}_{i},$$

for i = 1, ..., p and provide the expression for  $s_i(\lambda)$ , called the *i*-th *shrinkage* factor.

- c. Define the hat matrix  $\mathbf{H}(\lambda)$  with respect to  $\hat{\boldsymbol{\beta}}_R(\lambda)$  and show that  $\mathbf{H}(\lambda)$  is symmetric but *not*, in general, idempotent.
- d. Find the effective degrees of freedom, defined as the trace of  $H(\lambda)$ ,

$$df(\lambda) \equiv tr(\mathbf{H}(\lambda)).$$

Verify that df(0) = p (no regularization), and describe the behavior of  $df(\lambda)$  as  $\lambda \to \infty$ . [Hint: Recall that tr(AB) = tr(BA).]

4. Consider the following model:

$$y_{ij} = \mu + \alpha_i + e_{ij}, i = 1, \dots, a, j = 1, \dots, n$$

where  $\mu$  is the population mean of the response,  $\alpha_i$  denotes the effect of the *i*th randomly selected treatment and is assumed to be distributed *i.i.d.*  $N(0, \sigma_{\alpha}^2)$ , and  $e_{ij}$  denotes the random error and is distributed *i.i.d.*  $N(0, \sigma^2)$ . It is also assumed that  $\alpha_i$  and  $e_{ij}$  are independent random variables. Let  $\mathbf{y} = (y_{11}, \dots, y_{an})^T$ .

pendent random variables. Let  $\mathbf{y} = (y_{11}, \dots, y_{an})^T$ . Let  $SST = \sum_{i=1}^a \sum_{j=1}^n (y_{ij} - \overline{y}_{..})^2$ ,  $SSA = n \sum_{i=1}^a (y_{i\cdot} - \overline{y}_{..})^2$  and  $SSE = \sum_{i=1}^a \sum_{j=1}^n (y_{ij} - \overline{y}_{..})^2$ .

a. Show that the log likelihood function of  $(\mu, \sigma_{\alpha}^2, \sigma^2)$  is

$$-\frac{N}{2}\log(2\pi)-\frac{N-a}{2}\log\sigma^2-\frac{a}{2}\log(\sigma^2+n\sigma_\alpha^2)-\frac{SSE}{2\sigma^2}-\frac{SSA}{2(\sigma^2+n\sigma_\alpha^2)}-\frac{N(\overline{y}_{\cdot\cdot}-\mu)^2}{2(\sigma^2+n\sigma_\alpha^2)}\;,$$

where N=an,  $\mu\in\mathbf{R}$ ,  $\sigma_{\alpha}^{2}\geq0$  and  $\sigma^{2}\geq0$ .

b. Derive the REML (Restricted Maximum Likelihood) estimators of  $(\sigma_{\alpha}^2, \sigma^2)$ .