Topology Preliminary Exam, May 2025

University of Cincinnati, Department of Mathematical Sciences

To get full credit for a problem, make sure to provide a complete proof for all your claims in your answer. The set of all real numbers is denoted by \mathbb{R} in this exam.

- (1) Let (X, \mathcal{T}) be a topological space and E, F be non-empty connected subsets of X.
 - (a) Prove that if $E \cap F$ is non-empty, then $E \cup F$ is connected.
 - (b) Prove that if E and F are both closed and $E \cup F$ is connected, then $E \cap F$ is non-empty.
 - (c) Give a counterexample topological space X and connected subsets E and F of X such that $E \cup F$ is connected but $E \cap F$ is empty.
- (2) Let \mathcal{T} be the collection of all sets $U \subset \mathbb{R}$ (with \mathbb{R} the set of all real numbers) such that either U is empty or $0 \in U$.
 - (a) Prove that \mathcal{T} is a topology on \mathbb{R} .
 - (b) Let A = {1/n : n ∈ N}, where N is the collection of all positive integers, and let E = {0}. What are the closure of A and the closure of E in this topology?
 (c) Is R path-connected in this topology? Prove your assertion.
- (3) Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be two topological spaces with Y compact. Let $X \times Y$ be equipped with the corresponding product topology. Let $\pi : X \times Y \to X$ be the projection map given by $\pi(x, y) = x$. Prove that if E is a closed subset of $X \times Y$, then $\pi(E)$ is a closed subset of X.
- (4) Let $X = \mathbb{R}^2$, and S a fixed collection of polynomials in two variables. We also set $Z := \{(x, y) \in \mathbb{R}^2 : \forall f \in S \text{ we have } f(x, y) = 0\}$. Let \mathcal{U} consist of all sets $U \subset \mathbb{R}^2$ for which $\mathbb{R}^2 \setminus U \subset Z$.
 - (a) Prove that \mathcal{U} is a basis for a topology on \mathbb{R}^2 .
 - (b) Is this topology metrizable?
- (5) Let \mathbb{R}^3 be equipped with the Euclidean topology, and let $X = \mathbb{R}^3 \setminus \mathbb{S}^1$ be equipped with the subspace topology. What is the fundamental group of X? Here \mathbb{S}^1 is the unit circle $\mathbb{S}^1 := \{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 = 1\}.$