PRELIMINARY EXAM

PARTIAL DIFFERENTIAL EQUATIONS

Please start each problem on a new page, and arrange your work in order when submitting. **Please choose 5 problems out of the 6 problems on the exam. Only 5 problems will be graded.**

1. Consider the following nonlinear (Dirichlet) boundary-value problem on a (open and connected) domain $D \subset \mathbb{R}^n$ with smooth boundary:

$$\begin{cases} \Delta u - u^2 = f(x) & \text{ in } D, \\ u = g(x) & \text{ on } \partial D, \end{cases}$$

with given smooth functions f(x) and g(x). Show that it is impossible to have two distinct positive solutions of this problem.

2. Let *R* be the square $R = \{(x, y): -1 < x < 1, -1 < y < 1\} \subset \mathbb{R}^2$. Assume that u(x, y) satisfies

$$\begin{cases} \Delta u = -1 & \text{ in } R, \\ u = 0 & \text{ on } \partial R \end{cases}$$

Show that $\frac{1}{4} \le u(0,0) \le \frac{1}{2}$. *Hint: Consider* $v(x,y) = u(x,y) + \frac{1}{4}(x^2 + y^2)$.

3. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain (open and connected) with smooth boundary. Assume that u(x,t) is a smooth function on $\Omega \times [0,\infty)$ solving the initial-boundary value problem

$$\begin{cases} u_{tt} - \Delta u + V(x)u = h(x), & x \in \Omega, \quad t > 0, \\ u(x,0) = f(x), & x \in \Omega, \\ u_t(x,0) = g(x), & x \in \Omega, \\ u + \frac{\partial u}{\partial n} = 0, & x \in \partial\Omega, \quad t \ge 0, \end{cases}$$
(1)

where *n* denotes the outward unit normal vector on $\partial \Omega$ and f(x), g(x), V(x), and h(x) are smooth functions on Ω .

(a) For this part only, suppose that $h \equiv 0$. In this case, show that

$$E(t) = \frac{1}{2} \int_{\Omega} \left((u_t(x,t))^2 + |\nabla u(x,t)|^2 + V(x)(u(x,t))^2 \right) \, \mathrm{d}x + \frac{1}{2} \int_{\partial \Omega} (u(x,t))^2 \, \mathrm{d}S(x)$$

is a conserved quantity, i.e., $E(t) \equiv \text{constant}$ for all $t \ge 0$. What is the value of this constant (in terms of the data given in the problem (1))?

(b) Use part (a) to show that for any smooth f, g, h, V with $V(x) \ge 0$ on Ω , the initial-boundary value problem has at most one smooth solution.

The exam continues on the next page.

4. Let Ω be a bounded domain (open and connected) in \mathbb{R}^n . Assume that g is a function continuous in $\overline{\Omega} \times [0, T]$, u_0 is a function continuous in $\overline{\Omega}$ with $u_0 \ge 0$, and $F : \mathbb{R} \to \mathbb{R}$ is continuous with $F(s) \le C < +\infty$ for some constant C > 0 for all $s \in \mathbb{R}$.

Suppose that u = u(x, t) with $u \in C^{2,1}(\Omega \times (0, T]) \cap C(\overline{\Omega} \times [0, T])$ is a solution of

$$\begin{cases} u_t - \Delta u + gu = uF(u) & \text{ in } \Omega \times (0,T], \\ u(\cdot,0) = u_0 & \text{ on } \Omega \times \{0\}, \\ u = 0 & \text{ on } \partial\Omega \times (0,T] \end{cases}$$

Prove that

$$0 \le u(x,t) \le \sup_{\Omega} u_0$$
, for all $(x,t) \in \Omega \times (0,T]$.

Hint: Work with $w = ue^{-Mt}$ for a suitable choice of a constant M.

5. Let $\Omega = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_2 > 0\}$ and $\Gamma = \partial \Omega = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_2 = 0\}$. Solve the boundary value problem

$$\begin{cases} u_{x_1} + 4u_{x_2} = u^2 & \text{in } \Omega, \\ u(x) = \sin(x_1) & \text{on } \Gamma. \end{cases}$$

Find the smallest value of $x_2^* > 0$ such that the solution forms a singularity at $x = (x_1, x_2^*)$ for some $x_1 \in \mathbb{R}$. For such smallest value of $x_2^* > 0$, list values of x_1 for which the singularity is formed.

6. Find the entropy solution u = u(x, t) for the initial-value problem

$$\begin{cases} u_t + uu_x = 0, & x \in \mathbb{R}, \quad t > 0 \\ u(x,0) = g(x), & x \in \mathbb{R}, \end{cases}$$

with the initial data

$$g(x) = \begin{cases} 2, & x < -1, \\ 0, & -1 < x < 1, \\ 1, & x > 1. \end{cases}$$