Linear algebra qualification exam

May 5, 2025

- 1. (a) Let A be an m×n matrix with linearly independent columns. Show that the matrix A^TA is square, symmetric, and invertible. (A^T denotes transpose.)
 (b) Show that the eigenvalues of A^TA are positive.
- 2. Let $P : \mathbb{R}^2 \to \mathbb{R}^2$ be such that Px rotates x by an angle θ counterclockwise and reflects the result with respect to the x_1 -axis.
 - (a) Show that P is a linear transformation.
 - (b) Show that PPx = x for any $x \in \mathbb{R}^2$.
 - (c) Find the matrix for P (with respect to the standard basis).
- 3. Suppose U_1, U_2 , and W are finite dimensional subspaces of a vector space V with the properties
 - $U_1 \cap U_2 = \{\mathbf{0}\}.$
 - $U_2 \subseteq U_1 + W$.

Show that $\dim U_2 \leq \dim W$.

- 4. Consider the four functions $f_1(x) = \sin x$, $f_2(x) = \sin 2x$, $f_3(x) = \cos x$, $f_4(x) = \cos 2x$. Let $V = \operatorname{span}(f_1, f_2, f_3, f_4)$ and let $T: V \to V$ be the differentiation map Tf = f'.
 - (a) What is the null space of T?
 - (b) Write out the matrix for T with respect to the basis (f_1, f_2, f_3, f_4) .
- 5. Continue with the notation of Problem 4 above. Define an inner product on V by

$$\langle f,g \rangle = \frac{1}{\pi} \int_0^{2\pi} f(x)g(x)dx.$$

(a) Prove that $\mathcal{B} = \{f_1, f_2, f_3, f_4\}$ is an orthonormal basis of V. You can take for granted that $\int_0^{2\pi} \sin^2(x) dx = \pi$. Use periodicity to minimize the amount of computation.

(b) Compute the coordinates of $(\cos x + \sin x)^2 - 2\sin^2 x$ with respect to \mathcal{B} .