This exam contains six problems; all problems have the same weight. The worst score will be dropped; only five solutions will be counted. Proofs or counterexamples are required for all problems. Time allowed: 2 hours 30 minutes.

Notation: \mathbb{R} is the real line; \mathbb{R}^2 is the plane $\mathbb{R} \times \mathbb{R}$; \mathbb{N} is the set of positive integers.

- 1. (a) Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of non-negative numbers such that the series $\sum_{n=1}^{\infty} a_n$ converges. Prove that the series $\sum_{n=1}^{\infty} a_n^2$ also converges.
 - (b) Is the converse of the statement in part (a) true? Prove or give a counterexample.
- 2. Let $A \subset \mathbb{R}^2$ be a compact set. Prove that the set $\{x \in \mathbb{R} : \exists y \in \mathbb{R} \text{ such that } (x, y) \in A\}$ is also compact.
- 3. **Definition:** For a number L > 0, a function $f : \mathbb{R} \to \mathbb{R}$ is called Lipschitz with constant L if

 $|f(x) - f(y)| \le L|x - y|$, for all $x, y \in \mathbb{R}$.

Assume that a function $f \colon \mathbb{R} \to \mathbb{R}$ is differentiable on \mathbb{R} . Prove that f is Lipschitz with constant L if and only if $|f'(x)| \leq L$ for all $x \in \mathbb{R}$.

4. Let the function $f: [0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x = \frac{1}{n}, \ n \in \mathbb{N}; \\ 0, & \text{otherwise.} \end{cases}$$

Prove or disprove: f is Riemann integrable on the interval [0, 1].

- 5. (a) Give the definition of what it means for a function $g \colon \mathbb{R} \to \mathbb{R}$ to be uniformly continuous on a set $S \subset \mathbb{R}$.
 - (b) Let $g: \mathbb{R} \to \mathbb{R}$ be uniformly continuous on a set $S \subset \mathbb{R}$. Let $\{x_n\}_{n \in \mathbb{N}}$ be a Cauchy sequence of points in S. Prove that the sequence $\{g(x_n)\}_{n \in \mathbb{N}}$ is also Cauchy.
- 6. (a) Prove that the series

$$\sum_{n=1}^{\infty} \frac{\sin(2^n x)}{2^n}$$

converges for all $x \in \mathbb{R}$.

(b) Let
$$h: \mathbb{R} \to \mathbb{R}$$
 be defined by $h(x) = \sum_{n=1}^{\infty} \frac{\sin(2^n x)}{2^n}$. Prove that h is continuous on \mathbb{R} .