Topology Preliminary Exam, August 2025

University of Cincinnati, Department of Mathematical Sciences

To get full credit for a problem, make sure to provide a complete proof for all your claims in your answer. The set of all real numbers is denoted by \mathbb{R} in this exam. You may use without proof the fact that intervals in \mathbb{R} are connected with respect to the Euclidean topology.

(1) Let $X = \{(x,y) : x,y \in \mathbb{R}\}$, and let \mathcal{C} be the collection of all sets $K \subset X$ for which there is a (possibly empty) collection S_K of polynomials in x,y such that

$$K = \{(x, y) \in X : f(x, y) = 0 \text{ for each } f \in S_K\}.$$

Prove that the collection $\mathcal{T} := \{X \setminus K : K \in \mathcal{C}\}$ is a topology on X. (This is called the Zariski topology on \mathbb{R}^2 .)

- (2) Let (X, \mathcal{T}_X) be a compact topological space and (Y, \mathcal{T}_Y) be a Hausdorff space. Suppose that $f: X \to Y$ is a continuous bijective map. Prove that $f(U) \in \mathcal{T}_Y$ for each $U \in \mathcal{T}_X$.
- (3) Let \mathcal{T} be the collection of all subsets U of \mathbb{R} for which either $U = \mathbb{R}$ or else $\mathbb{R} \setminus U$ is a finite set. Let $A = \{1/n : n \in \mathbb{N}\}$, where \mathbb{N} is the set of all positive integers. Identify the closure of A and the boundary ∂A of A with respect to the topology \mathcal{T} on \mathbb{R} . You may use the fact that \mathcal{T} is a topology without proof.
- (4) Let \mathcal{T}_{Euc} be the Euclidean topology on \mathbb{R} , and let X = [-1, 1]. Let \mathcal{T} be the collection of all sets $U \subset X$ for which either $U \in \mathcal{T}_{\text{Euc}}$ or else $\{-1, 1\} \subset U$ and $U = [-1, 1] \cap W$ for some $W \in \mathcal{T}_{Euc}$.
 - (a) Show that \mathcal{T} is a topology on X.
 - (b) Show that $X \setminus \{0\}$ is connected with respect to this topology.
- (5) Let \mathbb{C} denote the collection of all complex numbers, equipped with the Euclidean topology, and let \mathbb{C}^* be the collection of all non-zero complex numbers, equipped with the Euclidean subspace topology. Let $f: \mathbb{C} \to \mathbb{C}^*$ be given by $f(z) = e^z$.
 - (a) Prove that f is a covering map.
 - (b) Compute the fundamental group of \mathbb{C}^* .