Real Analysis Preliminary Exam, August 21, 2025

Time allowed: 2 hours 30 minutes.

This exam contains six problems; all problems have the same weight. The worst score will be dropped; only five solutions will be counted.

Notation: \mathbb{R} is the set of real numbers; m is the Lebesgue measure on \mathbb{R} ; m^* is the Lebesgue outer measure on \mathbb{R} .

- 1. Let A_1 and A_2 be two disjoint Lebesgue measurable subsets of \mathbb{R} . Let $B_1 \subset A_1$ and $B_2 \subset A_2$. Prove that $m^*(B_1 \cup B_2) = m^*(B_1) + m^*(B_2)$.
- 2. Let μ be a non-negative measure on the measurable space $(\mathbb{R}, \mathcal{L})$, where \mathcal{L} is the σ -algebra of Lebesgue measurable subsets of \mathbb{R} . Assume that there exists $M \geq 0$ such that

$$\int_{\mathbb{R}} e^{nx^3} \, d\mu \le M, \quad n = 1, 2, 3, \dots$$

- (a) Prove that $\mu((0,\infty)) = 0$.
- (b) Is it necessarily true that $\mu([0,\infty)) = 0$? Prove or give a counterexample.
- 3. Let $A_1, \ldots, A_n \subset [0,1]$ be Lebesgue measurable sets such that $\sum_{k=1}^n m(A_k) > 4$. Prove that there is a point $x \in [0,1]$ that lies in at least 5 of these sets.
- 4. Let f be a Lebesgue integrable function on $(0, \infty)$. Prove that

$$\lim_{n \to \infty} \frac{1}{n^3} \int_0^n x^3 f(x) dm = 0.$$

- 5. (a) Give the definition of a function of bounded variation on [0, 1].
 - (b) Let f be a function of bounded variation on [0,1]. Prove that f is Lebesgue measurable on [0,1].
- 6. Let f be a Lebesgue integrable function on $(1, \infty)$. Let $g(x) = \int_x^\infty \frac{f(t)}{t} dt$ for x > 1. Prove that g is Lebesgue integrable on $(1, \infty)$.