Question 1
(a) Define Lebesgue outer measure on subsets of \(\mathbb{R} \) and what it means for a subset of \(\mathbb{R} \) to be Lebesgue measurable.
(b) Fix \(0 < \alpha < 1 \). Let \(F_1 \) be obtained from \([0, 1]\) by removing the centered open interval of length \(\alpha 3^{-1} \). Given \(n \geq 2 \) for which \(F_{n-1} \) has been defined and is a finite disjoint union of closed intervals, define \(F_n \) by removing the centered open interval of length \(\alpha 3^{-n} \) from each of the intervals which form \(F_{n-1} \). Let \(F = \cap_{n=1}^{\infty} F_n \). Show that \(F \) is closed, \([0, 1] \setminus F \) is dense in \([0, 1]\), and \(m(F) = 1 - \alpha \).
(c) Suppose \(U \subset \mathbb{R} \) is a non-empty open set. Must it be true \(m(U) > 0 \)? Give a proof or counterexample.
(d) Suppose \(U \subset \mathbb{R} \) is a non-empty open set. Must it be true \(m(\partial U) = 0 \), where \(\partial U \) denotes the boundary of \(U \)? Give a proof or counterexample.

Hint: Consider \(U = F^c \) where \(F \) is defined in part (b).

Question 2
(a) Define what it means for a sequence of functions \(f_n : D \to \mathbb{R} \) on a Lebesgue measurable set \(D \subset \mathbb{R} \) to be Lebesgue measurable.
(b) Suppose \(f_n : D \to \mathbb{R} \) is a sequence of Lebesgue measurable functions on a Lebesgue measurable set \(D \subset \mathbb{R} \). Show that \(\{ x \in D : (f_n(x)) \text{ converges} \} \) is a Lebesgue measurable set.

Hint: Consider the Cauchy condition.
(c) Suppose \(f_n : D \to \mathbb{R} \) is a sequence of Lebesgue measurable functions on a Lebesgue measurable set \(D \subset \mathbb{R} \) that converge pointwise to a function \(f : D \to \mathbb{R} \). Show that \(f \) is Lebesgue measurable.
(d) Suppose \(f : \mathbb{R} \to [0, \infty) \) is a non-negative Lebesgue measurable function. Show that there exists an increasing sequence of simple functions \(\varphi_n : \mathbb{R} \to [0, \infty) \) which converge pointwise to \(f \). What is the relation between \(\int_{\mathbb{R}} f \, dm \) and \(\int_{\mathbb{R}} \varphi_n \, dm \)?
QUESTION 3

(a) State the monotone and dominated convergence theorems for a sequence of Lebesgue measurable functions \(f_n : \mathbb{R} \to \mathbb{R} \), taking care to include all necessary hypotheses.

(b) Suppose \(f_n : \mathbb{R} \to \mathbb{R} \) are a sequence of non-negative Lebesgue measurable functions which satisfy \(f_{n+1}(x) \leq f_n(x) \) for every \(x \in \mathbb{R} \) and converge pointwise to a function \(f : \mathbb{R} \to \mathbb{R} \).

(i) Show it need not be true that \(\int_{\mathbb{R}} f_n \to \int_{\mathbb{R}} f \).

(ii) Show that if we also assume \(f_1 \) is integrable, then \(\int_{\mathbb{R}} f_n \to \int_{\mathbb{R}} f \).

(c) Let \(f : \mathbb{R} \to \mathbb{R} \) be integrable with respect to Lebesgue measure. Show that \(\lim_{n \to \infty} \int_{\mathbb{R}} |f|^{1/n} \, dm \) exists and find the limit.

\textbf{Hint:} Let \(A = \{ x \in \mathbb{R} : |f(x)| > 0 \} \), \(B = \{ x \in \mathbb{R} : |f(x)| \geq 1 \} \), and consider integrals over \(B \) and \(A \setminus B \) separately.

QUESTION 4

(a) State Tonelli’s theorem for a Lebesgue measurable function \(f : \mathbb{R}^2 \to \mathbb{R} \), taking care to include all necessary hypotheses.

(b) Suppose \(A, B \subset \mathbb{R} \) are Borel measurable. Show that the function \(f : \mathbb{R}^2 \to \mathbb{R} \) defined by \(f(x, y) = \chi_A(x + y)\chi_B(y) \) is Borel measurable.

(c) Given Borel sets \(A, B \subset \mathbb{R} \), define \(h : \mathbb{R} \to \mathbb{R} \) by \(h(x) = m((A - x) \cap B) \), where \(A - x := \{ a - x : a \in A \} \). Show that \(h \) is Borel measurable and compute \(\int_{\mathbb{R}} h(x) \, dm(x) \).

\textbf{Hint:} First prove \(\chi_E(y)\chi_F(y) = \chi_{E \cap F}(y) \) and \(\chi_E(x + y) = \chi_{E - x}(y) \) for all \(E, F \subset \mathbb{R} \) and \(x, y \in \mathbb{R} \). Then consider \((x, y) \mapsto \chi_{A - x}(y)\chi_B(y) \).