1. Consider a sequence of positive random variables \(\{X_n\}_{n \in \mathbb{N}} \) identically distributed (not necessarily independent) with \(\mathbb{E}X_1 < \infty \).

 (a) For each \(\varepsilon > 0 \), prove that
 \[
 \frac{1}{n} \mathbb{E} \left(\max_{1 \leq k \leq n} X_k \right) \leq \varepsilon + \mathbb{E}(X_1 1(X_1 > \varepsilon n)),
 \]
 where \(1(\cdots) \) is the indicator function.

 (b) Show that
 \[
 \lim_{n \to \infty} \frac{1}{n} \mathbb{E} \left(\max_{1 \leq k \leq n} X_k \right) = 0.
 \]
 (You may use the result of part (a) directly.)

2. Let \(\{X_i\}_{i \in \mathbb{N}} \) be identically distributed random variables with \(\mathbb{P}(X_1 > x) = e^{-x}, x > 0 \), not necessarily independent.

 (a) Show that for every \(\varepsilon > 0 \) we have
 \[
 \mathbb{P}(X_n > (1 + \varepsilon) \log n \ i.o.) = 0.
 \]

 (b) Assume further that \(\{X_i\}_{i \in \mathbb{N}} \) are independent. Show that
 \[
 \limsup_{n \to \infty} \frac{X_n}{\log n} = 1, \text{ a.s.}
 \]

3. Let \(X_1, X_2, \ldots \) be a sequence of i.i.d. random variables with exponential distribution:
 \(\mathbb{P}(X_n \geq x) = e^{-\alpha x}, x \geq 0 \), for some \(\alpha > 0 \) fixed. Find a sequence of constants \(\{b_n\}_{n \in \mathbb{N}} \) such that
 \[
 \max_{i=1,\ldots,n} X_i - b_n \Rightarrow X,
 \]
 where the limit random variable \(X \) is not degenerate. Identify the distribution of the \(X \).

4. Let \(X_1, X_2, \ldots \) be a sequence of independent random variables such that
 \[
 \mathbb{P}(X_k = k^{-1/2}) = \frac{1}{2} \text{ and } \mathbb{P}(X_k = -k^{-1/2}) = \frac{1}{2}.
 \]
 Write \(S_n = \sum_{i=1}^{n} X_i \).

 (a) Show that \(\lim_{n \to \infty} \frac{\text{var}(S_n)}{\log n} = 1 \) as \(n \to \infty \).

 (b) Show that
 \[
 \frac{S_n}{(\log n)^{1/2}} \Rightarrow \mathcal{N}(0, 1),
 \]
 where \(\mathcal{N}(0, 1) \) denotes the distribution of a standard Gaussian random variable.