Preliminary Examination: LINEAR MODELS

Answer all questions and show all work.
Q1 is 30 points; Q2 is 35 points, and Q3 is 35 points.

1. Let Y be an n-dimensional response vector. X_1 and X_2 are $n \times p$ and $n \times q$ matrices, respectively. Suppose that the correct model is:

$$Y = X_1 \beta_1 + X_2 \beta_2 + \epsilon,$$

where $E(\epsilon) = 0$ and var$(\epsilon) = \sigma^2 I$. Suppose that we fit the following incorrect model:

$$Y = X_1 \beta_1 + \epsilon$$

with the same assumptions for ϵ. Assume that X_1 is full rank.

a. Consider the ordinary least squares (OLS) estimator $\hat{\beta}_1$ of β_1 under the correct model. Let $\tilde{\beta}_1$ denote the OLS estimator of β_1 when we fit the incorrect model. Assuming in part (a) that $\beta_2 = 0$, compare $\hat{\beta}_1$ and $\tilde{\beta}_1$ in terms of bias and variance.

Hint:

$$\left(\begin{array}{cc} A & B \\ B' & C \end{array} \right)^{-1} = \left(\begin{array}{cc} A^{-1} & 0 \\ 0' & 0 \end{array} \right) + \left(\begin{array}{c} -A^{-1}B \\ 0' \end{array} \right) \left(C - B'A^{-1}B \right)^{-1} \left(\begin{array}{c} C - B'A^{-1}B \\ 0 \end{array} \right)$$

b. Assume in part (b) that $\epsilon \sim \mathcal{N}_n(0, \sigma^2 I)$. When we fit the incorrect model and would like to test $H_0 : \beta_1 = 0$ vs. $H_a : \beta_1 \neq 0$, suppose we use the usual F test statistics assuming the incorrect model:

$$F = \frac{SSM/p}{SSE/(n - p)}.$$

Give the expressions of the model sum of squares (SSM) and residual sum of squares (SSE). What are the actual distributions of SSM and SSE under H_0 (and the correct model), respectively? Comment on the validity of this F test for $H_0 : \beta_1 = 0$.
2. Consider the normal linear model \(Y = X\beta + \varepsilon \) where \(X \) is an \(n \times p \) design matrix with full rank and \(\varepsilon \sim \mathcal{N}_p(0, \sigma^2 I_n) \). Let \(\hat{\beta} \) be the ordinary least squares (OLS) estimator of \(\beta \). The ridge regression estimator \(\hat{\beta}_R(\lambda) \) of \(\beta \) is the vector-value of \(\beta \) that minimizes
\[
Q(\beta) = (Y - X\beta)'(Y - X\beta) + \lambda \beta'\beta,
\]
where \(\lambda > 0 \) is a fixed real number.

a. Find an expression for \(\hat{\beta}_R(\lambda) \). Show that you can write \(\hat{\beta}_R(\lambda) = W_\lambda \hat{\beta} \) for some matrix \(W_\lambda \) that depends on \(\lambda \) and give the explicit expression for \(W_\lambda \).

b. Find the mean, bias and variance of \(\hat{\beta}_R(\lambda) \).

c. Show that \(\text{Var}(\hat{\beta}_R(\lambda)) < \text{Var}(\hat{\beta}) \) in the sense that \(\text{Var}(\hat{\beta}_R(\lambda)) - \text{Var}(\hat{\beta}_R(\lambda) - \beta) \) is a positive definite matrix. Hint: You may use \(X'X = PDP' \) where \(D \) is a diagonal matrix and \(P \) is an orthogonal matrix.

d. Find the mean squared error of \(\hat{\beta}_R(\lambda) \), \(\text{MSE}(\lambda) = E\{ (\hat{\beta}_R(\lambda) - \beta)'(\hat{\beta}_R(\lambda) - \beta) \} \).

e. Assuming now that \(X'X = dI_p \) where \(d \) is a fixed constant, find the optimum value of \(\lambda \) that minimizes the \(\text{MSE}(\lambda) \).

3. This problem concerns the situation where doubts are casted on the stability assumption of the regression coefficient and the independence assumption of the errors. Consider the following change-point model:
\[
Y_i = \mu_i + \varepsilon_i, \quad i = 1, \ldots, n,
\]
where
\[
\mu_i = \begin{cases}
\beta_1, & \text{if } i \leq n/2; \\
\beta_2, & \text{otherwise}.
\end{cases}
\]
Suppose that we only observe \(Y_1, \ldots, Y_n \). For simplicity, assume that the sample size is even, namely \(n = 2m \) for some integer \(m > 0 \). Let \((\hat{\beta}_1, \hat{\beta}_2) \) be the ordinary least squares (OLS) estimator of \((\beta_1, \beta_2) \).

a. Find the OLS estimator \((\hat{\beta}_1, \hat{\beta}_2) \).

Assume that the errors satisfy
\[
\varepsilon_i = e_i - a e_{i-1}, \quad i = 1, \ldots, n,
\]
where \(a \in \mathcal{R} \) is a parameter controlling the dependence strength, and \(e_k, k = 0, 1, \ldots, n, \) are independent normal random variables with mean zero and variance \(\sigma^2 > 0 \).

b. Assume that \(a = 0 \). Find the joint distribution of \((\hat{\beta}_1, \hat{\beta}_2) \). Are \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \) independent in this case? Howe does the variance of \(\hat{\beta}_1 \) change when \(n \to \infty \) (for example, whether it decreases to zero linearly in \(n \), quadratically or at some other rate)?

c. Assume that \(a = 0 \). Find an unbiased estimator of \(\sigma^2 \) and derive a test for:
\[
H_0 : \beta_1 - \beta_2 = 0 \quad \text{vs} \quad H_a : \beta_1 - \beta_2 \neq 0
\]
You need to specify the test statistic and its distribution under the null hypothesis.

d. Now assume that $a = 1$. Find the joint distribution of $(\hat{\beta}_1, \hat{\beta}_2)$. Are $\hat{\beta}_1$ and $\hat{\beta}_2$ independent in this case? How does the variance of $\hat{\beta}_1$ change when $n \to \infty$ in this case (for example whether it decreases to zero linearly in n, quadratically or at some other rate)? Compare your result with the one in part (b) and comment on the effect of dependence among the errors. Is dependence always a “bad” thing?

e. Now suppose that $0 < a < 1$. Find the distribution of $\hat{\beta}_1$. How does the variance of $\hat{\beta}_1$ change when $n \to \infty$ (for example whether it decreases to zero linearly in n, quadratically or at some other rate)? Compare your result with the ones in parts (b) and (d) and comment.