Show all essential work.

1. A space is *totally disconnected* if its only connected subspaces are one-point sets. Show that if \(X \) has the discrete topology, then \(X \) is totally disconnected. Does the converse hold?

2. Let \(\mathbb{Z}^+ \) denote the set of positive integers; and \(X = \{ x \in \mathbb{Z}^+ : x \geq 2 \} \), together with the topology generated by the subbasis \(\{ U_n : n \geq 2 \} \), where \(U_n = \{ x \in \mathbb{Z}^+ : x \text{ divides } n \} \).

 (1) Is \(X \) Hausdor?
 (2) Is \(X \) connected? Path connected?
 (3) Is \(X \) locally compact? Compact?

3. Let \(X \) be a Hausdor space. Show that following are equivalent.

 (1) \(X \) is a compact space.
 (2) For every topological space \(Y \) the projection \(p : X \times Y \to Y \) is closed.
 (3) For every normal topological space \(Y \) the projection \(p : X \times Y \to Y \) is closed.

4. Prove: If \(X, Y \) are connected topological space with proper subsets \(A \subset X, B \subset Y \), then \((X \times Y) \setminus (A \times B) \) is connected.

5. On fundamental groups and homeomorphisms.

 (1) Define fundamental group and give 3 distinct examples. Explain.
 (2) Which pairs are homeomorphic? Prove why and/or why not.
 \(\mathbb{R}, \ \mathbb{R}^2, \ \mathbb{R}^3 \)

 Hints: Remove a point. And for the latter two, think also homotopy and its connection to fundamental group (e.g., simply connectedness (i.e., loops homotopic to constant), etc.).