\(\mathbb{C} \) is the field of complex numbers \(z = x + iy \), \(\mathbb{R} \) the field of real numbers, \(\mathbb{D} \) the open unit disk, and \(\hat{\mathbb{C}} \) the Riemann sphere (aka, extended complex plane)

If you use a known theorem, or a similar result from a textbook, be sure to explicitly indicate so. Any other facts used must be proven. Proofs, or counter examples, are required for all problems.

1. Find the Laurent series of the function \(\frac{1}{z(z-1)} \) for the region \(2 < |z+2| < 3 \).

2. Let \(f \) and \(g \) be non-constant and holomorphic in \(\mathbb{D} \setminus \{0\} \). Define \(h(z) \) for \(z \in \mathbb{D} \setminus \{0\} \) by \(h(z) := f(z)g(z) \).
 (a) Explain why \(h \) has an isolated singularity at \(z = 0 \).
 (b) Discuss the nature of the isolated singularity \(z = 0 \) for \(h \). (When is it: removable? a pole? an essential singularity?)

3. Let \(T(z) = \frac{z}{z+1} \).
 (a) Find the image \(T(\mathbb{R}) \) where \(\mathbb{R} \) is the extended real line in \(\hat{\mathbb{C}} \).
 (b) Find the image \(T(K) \) where \(K \) is the unit circle \(|z| = 1 \).
 (c) Find the image \(T(L) \) where \(L \) is the line \(\text{Re}(z) = 1 \).

4. Let \(f \) be holomorphic in the annulus \(A := \{1 < |z| < 2\} \). Suppose there is a sequence \((p_n) \) of polynomials that converges locally uniformly in \(A \) to \(f \). Prove that there is a function \(F \) that is holomorphic in \(|z| < 2 \) with \(F|A = f \).

5. Compute the integral \(\int_{-\infty}^{\infty} \frac{\cos(2x)}{1+x^4} \, dx \).

6. How many roots does the polynomial \(f(z) = z^5 + 2z^2 + 1 \) have in the annulus \(\{z \in \mathbb{C} : \frac{1}{2} < |z| < 2\} \)?