1. Prove that for a subset $E \subset [0, 1]$ the following conditions are equivalent:
 (i) Every continuous function $f : E \to [0, \infty)$ is bounded.
 (ii) E is a closed set.

2. Let (f_n) be a sequence of continuous functions on $D \subset \mathbb{R}^p$ to \mathbb{R}^q such that (f_n) converges uniformly to f on D, and let (a_n) be a sequence of points in D that converges to $a \in D$. Prove that $(f_n(a_n))$ converges to $f(a)$.

3. Let f be a differentiable function on the interval $(-2, 2)$ such that f' is continuous on this interval. Prove that
 $$\lim_{h \to 0} \int_0^1 \left(\frac{f(x + h) - f(x)}{h} - f'(x) \right) \, dx = 0.$$

4. Find the largest set $D \subset \mathbb{R}$ such that for all $x \in D$ the series $\sum_{n=2}^{\infty} \frac{2^n}{n-1} (3x - 1)^n$ converges.

5. Let P_3 be the collection of all polynomials in x with coefficients in \mathbb{R} with degree at most 3, and let $T : P_3 \to P_3$ be the linear transformation given by
 $$T(a_0 + a_1x + a_2x^2 + a_3x^3) = a_1x + 2a_2x^2 + 3a_3x^3.$$
 (a) Find a basis for P_3 with respect to which the matrix representing T is diagonal.
 (b) Determine the kernel and the image of T.

6. (a) Define what it means to say that vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent.
 (b) Let A be an $n \times n$ matrix with real entries. If $v_1, \ldots, v_k \in \mathbb{R}^n$ are eigenvectors of A with distinct real eigenvalues, use the definition to show that v_1, \ldots, v_k are linearly independent.

 Hint: Use mathematical induction.

7. Let W be a subspace of an inner product space $(V, \langle ., . \rangle)$. If W is spanned by vectors $\{v_1, \ldots, v_k\}$, show that the orthogonal complement W^\perp is equal to $\bigcap_{j=1}^{k} \langle v_j \rangle^\perp$.

8. Let f be the mapping of \mathbb{R}^2 into \mathbb{R}^2 that sends the point (x, y) into the point (u, v) given by
 $$u = x^2 - y^2, \quad v = 3xy$$
 Show that f is locally one-to-one at every point except $(0, 0)$, but f is not one-to-one on \mathbb{R}^2.