Sample Questions for the PhD Preliminary Exam in Analysis

Department of Mathematical Sciences
University of Cincinnati
February 2013

Real Analysis

1. Let f be a real-valued function on \mathbb{R}. Show that the set of points where f is continuous is a G_δ set.

2. Let f be a non-negative integrable function on a measure space (X, \mathcal{M}, μ). Suppose that, for every $n \in \mathbb{N}$,

$$\int_X |f|^n \, d\mu = \int_X f \, d\mu.$$

Show that $f = \chi_E$ a.e. on X, where E is a measurable subset of X.

3. Let f be absolutely continuous and strictly increasing on $[a, b]$. Show that for every open subset O of (a, b),

$$m(f(O)) = \int_O f'.$$

4. Let f be a real-valued function that is integrable on \mathbb{R} and let $\varepsilon > 0$. Show that there is a continuous function g that is identically zero outside some interval and such that

$$\int_{\mathbb{R}} |f - g| < \varepsilon.$$

(Hint: Lusin’s theorem.)

5. Let (X, \mathcal{M}, μ) be a σ-finite measure space and f a measurable real-valued function on X. Prove that

$$\int_X f^2 \, d\mu = 2 \int_0^\infty s \mu(\{x \in X : |f(x)| > s\}) \, ds$$
Complex Analysis

1. Let $\text{Log}(z)$ denote the principal branch of the logarithm function.

 (a) Show that in general $\text{Log}(ab) \neq \text{Log}(a) + \text{Log}(b)$.

 (b) For a given $a \in \mathbb{C}\setminus\{0\}$, determine the set of all z for which

 $\text{Log}(az) = \text{Log}(a) + \text{Log}(z)$.

2. State and derive the Cauchy-Riemann equations.

3. Evaluate

 $\int_{|z|=1} (z^2 + 2z) \csc(z)^2 dz$.

4. Let $f(z) = z^2$.

 (a) Calculate $\int_0^{2\pi} f(2 + e^{i\theta}) d\theta$ and confirm it is non-zero.

 (b) Does Cauchy’s theorem give $\int_{|z|=1} f(z) dz = 0$?
 Explain the seeming discrepancy with (a).

5. Let $f(z) = u(z) + iv(z)$ be an entire function satisfying $u(z) \leq 0$ for all $z \in \mathbb{C}$.
 Show that $f(z)$ is constant.
 Hint: Consider $g(z) = e^{f(z)}$.

6. (a) Find the general form of any Möbius transformation which maps the unit disk D onto the upper half-plane.

 (b) What changes if we add the requirement that the origin should be mapped to i?

7. Show that $f(z) = z^4 - 3z^2 + 3$ has exactly one zero in the open first quadrant
 $Q_1 = \{z : \Re(z) > 0, \Im(z) > 0\}$.
 Hint: Use the Argument Principle.

8. Let R be a rational function. State and prove necessary and sufficient conditions for there to be a holomorphic branch of the logarithm of R in some domain Ω.