Preliminary Examination:
LINEAR MODELS

Answer all questions and show all work.

1. Suppose that data \(\{(x_{ij}, y_{ij}) : i = 1, \ldots, k, j = 1, \ldots, J\} \) can be modeled as having a common slope and possibly different intercepts using the linear model,
\[
Y_{ij} = \beta_i + \gamma x_{ij} + \epsilon_{ij},
\]
where \(\{\epsilon_{ij}\} \) are independently and identically distributed \(\mathcal{N}(0, \sigma^2) \) random variables. Assume that no vector \((x_{i1}, \ldots, x_{iJ}) \), for \(i = 1, \ldots, k \), is proportional to the vector of 1s.

a. Determine the ordinary-least-squares estimator of \((\beta_1, \ldots, \beta_k, \gamma)' \).

b. Give an explicit expression for the size \(\alpha \) likelihood-ratio test of the hypothesis,
\[
H_0 : \beta_1 = \cdots = \beta_k = 0 \quad \text{versus} \quad H_a : \text{not } H_0
\]

c. Compute the power of the test that you derived in part (b). (There are several ways of defining the non-centrality parameter for the test. Pick any one of these, and use it consistently in this part.) Show that the power is independent of \(\gamma \).

2. Let \(X_1, \ldots, X_n \) be iid random variables with a \(\mathcal{N}(\theta, \sigma^2) \) distribution conditional on \(\theta \) and \(\sigma^2 \), and \(\theta \) and \(\sigma^2 \) are unknown.

a. Give the classical test statistic for testing \(\sigma^2 = \sigma_0^2 \) against \(\sigma^2 \neq \sigma_0^2 \).

Suppose that the following assumptions are made concerning \(\theta \) and \(\sigma^2 \): \(\theta \) follows a \(\mathcal{N}(\theta_0, \tau^2) \) distribution with both \(\theta_0^2 \) and \(\tau^2 \) known, and \(\sigma^2 = \sigma_0^2 > 0 \).

b. The (joint) marginal distribution of \((X_1, \ldots, X_n) \) (i.e., unconditional on the parameters) is multivariate normal. Derive the mean and variance-covariance matrix for this distribution.

c. Find the distribution of the random variable
\[
T(X_1, \ldots, X_n) = \frac{1}{\sigma_0^2} \sum_{i=1}^{n} (X_i - \bar{X})^2 + \frac{n(\bar{X} - \theta_0)^2}{n\tau^2 + \sigma_0^2}
\]
under the marginal distribution of \((X_1, \ldots, X_n) \).

d. Let \((x_1, \ldots, x_n) \) denote the observed values of \((X_1, \ldots, X_n) \). The Bayesian prior predictive p-value to validate the specified model is defined as
\[
p = P(T(X_1, \ldots, X_n) \geq T(x_1, \ldots, x_n))
\]
under the marginal distribution of \((X_1, \ldots, X_n)\). Compare this Bayesian prior predictive p-value to the classical p-value for testing \(\sigma^2 = \sigma_0^2\) against \(\sigma^2 \neq \sigma_0^2\) in part (a).

3. Consider a simple linear regression model,

\[
Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad i = 1, \ldots, n,
\]

where \(\{\epsilon_i\}\) are iid \(N(0, \sigma^2)\) random variables.

Let \(Y' = (Y_1, Y_2, \ldots, Y_n)\), \(\beta' = (\beta_0, \beta_1)\), and \(X' = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ x_1 & x_2 & \cdots & x_n \end{bmatrix}\). Furthermore, for known constants \(\{z_i : i = 1, \ldots, n\}\), define \(Z' = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ z_1 & z_2 & \cdots & z_n \end{bmatrix}\), and assume that \(Z'X\) is a non-singular matrix.

a. Show that the so-called instrumental-variable estimator, \(\tilde{b} = (Z'X)^{-1}Z'Y\), is an unbiased estimator of the vector \(\beta\).

b. Find the sampling distribution of \(\tilde{b} = (\tilde{b}_0, \tilde{b}_1)'\), including its mean vector and variance-covariance matrix. Furthermore, let \(\hat{b} = (\hat{b}_0, \hat{b}_1)'\) be the OLS estimator of \(\beta\). Prove that \(\text{var}(\tilde{b}_1) \geq \text{var}(\hat{b}_1)\).

c. Let \(P_Z\) denote the projection matrix on the column space \(C(Z)\).

c-i. Show that \(Y'(I - P_Z)Y/\sigma^2\) has a chi-squared distribution. Give its degrees of freedom and the non-centrality parameter.

c-ii. What is the value of the non-centrality parameter when \(\beta_1 = 0\)? Justify your answer.

d. Let the residuals corresponding to the instrumental-variable estimator \(\tilde{b}\) be denoted by

\[
\tilde{e} = Y - X\tilde{b}.
\]

d-i. Show that \(\tilde{b}\) and \(\tilde{e}\) are independently distributed and give the sampling distribution of \(\tilde{e}\).

d-ii. Now let \(Q\) denote the \(n \times n\) matrix so that \(\tilde{e} = QY\). Show that the matrix \(Q\) is not symmetric. Is the matrix \(Q\) idempotent? Explain why or why not.

d-iii. Give a necessary and sufficient condition for the distribution of \(\tilde{e}'\tilde{e}/\sigma^2\) to be a chi-squared distribution.

4. Consider the 2-way random effects model with interactions:

\[
Y_{ijk} = \mu + \tau_i + \beta_j + (\tau \beta)_{ij} + \epsilon_{ijk}, \quad i = 1, 2, \quad j = 1, 2, \quad k = 1, \ldots, n_{ij},
\]

with variance components \(\sigma^2_a, \sigma^2_b, \sigma^2_{ab},\) and \(\sigma^2\), respectively.
a. Assume $n_{11} = n_{12} = n_{21} = 2$, and $n_{22} = 3$. Find the Expected Mean Squares as functions of the variance components for the two factors.

b. Repeat part (a) with $n_{11} = n_{12} = n_{21} = n_{22} = 2$, Comment briefly on the results in parts (a) and (b).