I. Algebra

(1). Let \(R \) be an integral domain.
(a) Define what it means for an element \(r \in R \) to be irreducible.
(b) Define what it means for an element \(r \in R \) to be prime.
(c) Show that in an integral domain a prime element is irreducible.
(d) Show that in a principal ideal domain that an irreducible element is prime.

(2). Suppose \(F = \mathbb{Q}(\alpha_1, \alpha_2, \ldots, \alpha_n) \), where \(\alpha_i^2 \in \mathbb{Q} \) for \(i = 1, 2, \ldots, n \). Prove that \(\sqrt[3]{3} \notin F \).

(3). Let \(F \) be a field.
(a) Let \(\alpha \in F \) be algebraic. Prove there is a unique monic irreducible polynomial \(m_\alpha(x) \in F[x] \) that has \(\alpha \) as a root.
(b) Prove that \(\alpha \in F \) is algebraic if and only if \(F(\alpha)/F \) is a finite extension.

(4). Let \(F = \mathbb{Q}(\sqrt[3]{3}, \sqrt{5})/\mathbb{Q} \).
(a) Prove that \(F \) is a Galois extension.
(b) Compute the Galois group.
(c) Explicitly give the correspondence between the subfields of \(F \) and the subgroups of the Galois group.

II. Topology

(1). Let \(X \) and \(Y \) be topological spaces and suppose \(f : X \to Y \). Show the following three conditions are equivalent:
(i) \(f \) is continuous.
(ii) For every subset \(A \subset X \), \(f(A) \subset f(A) \).
(iii) For every closed set \(B \subset Y \), the set \(f^{-1}(B) \) is closed in \(X \).

(2). Let \(A \) and \(B \) be subspaces of \(X \) and \(Y \), respectively. Let \(N \) be an open set in \(X \times Y \) containing \(A \times B \). Suppose \(A \) and \(B \) are compact. Show there exist open sets \(U \) and \(V \) in \(X \) and \(Y \), respectively, such that \(A \times B \subset U \times V \subset N \).

(3). Let \(X \) be a topological space.
(a) Show that if \(X \) is regular, every pair of points of \(X \) have neighborhoods whose closures are disjoint.
(b) Show that if \(X \) is normal, every pair of disjoint closed sets have neighborhoods whose closures are disjoint.

(4). Let \(q : X \to Y \) and \(r : Y \to Z \) be covering maps. Set \(p := r \circ q \). Show that if \(r^{-1}(z) \) is finite for each \(z \in Z \), then \(p \) is a covering map.