Real Analysis
In this part of the exam, \(m \) or \(dx \) (resp., \(m^2 \)) denote Lebesgue measure on \(\mathbb{R} \) (resp., on \(\mathbb{R}^2 \)).

1. Carefully justifying your answer, evaluate:
\[
\lim_{n \to \infty} \int_0^\infty \frac{n \sin x}{1 + n^2 x^2} \, dx.
\]

2. Let \(f_n : \mathbb{R} \to \mathbb{R} \) be a sequence of measurable functions. Show that the set
\[
\{ x \in \mathbb{R} : (f_n(x))_{n=1}^\infty \text{ converges to a real number} \}
\]
is measurable. Hint: a sequence in \(\mathbb{R} \) converges if and only if it is Cauchy.

3. Let \(f : [0, 1] \to \mathbb{R} \) be an absolutely continuous strictly increasing function. Prove that for every \(\epsilon > 0 \) there is \(\delta > 0 \) such that if \(E \subset [0, 1] \) and \(m^*(E) < \delta \), then \(m^*(f(E)) < \epsilon \), where \(m^* \) denotes the Lebesgue outer measure.

4. Let \(f \in L^1(0, \infty) \). For \(x > 0 \), define \(g(t, x) = tf(t)e^{-tx} \). Prove that \(g \in L^1((0, \infty) \times (0, \infty)) \) and
\[
\int_{(0,\infty) \times (0,\infty)} g(t, x) \, dm^2(t, x) = \int_0^\infty f(t) \, dm(t)
\]
justifying all your steps.

Complex Analysis
In this part of the exam, \(\mathbb{C} \) denotes the collection of all complex numbers.

1. Compute the following integral using the method of residues or the argument principle:
\[
\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + 1)(x^2 + 9)} \, dx.
\]

2. Let \(f \) be given by \(f(z) = \frac{1}{1+z} \) and for each positive integer \(n \) let the function \(g_n \) be the \(n \)-fold composition of \(f \) with itself, so \(g_2 = f \circ f \), \(g_3 = f \circ f \circ f \), etc.
 (a) Find an explicit formula for \(g_n \) for each positive integer \(n \).
 (b) Prove that the sequence \(g_n \) converges to zero uniformly on the disk \(\{ z : |z - 1| < 1 \} \).

3. Let \(a, b \in \mathbb{C} \) with \(a \neq b \), and let \(F(z) = \frac{z-a}{z-b} \).
 (a) Find the image of the line passing through \(a \) and \(b \) and \(\infty \).
 (b) Find the image of the perpendicular bisector of the line \([a, b] \) (including \(\infty \) as a point in that line).
 (c) Find the image of the Euclidean circle centered at \((a+b)/2 \) with radius \(|a - b|/2 \) (that is the circle centered at the midpoint between \(a \) and \(b \), and passing through both \(a \) and \(b \)).

4. Let \(f \) and \(g \) be two non-constant holomorphic (that is, complex analytic) functions in a region \(\Omega \subset \mathbb{C} \) such that \(|f(z)| \leq |g(z)| \) for all \(z \in \Omega \). Let \(K = g^{-1}(\{0\}) \). Prove that the function \(f/g \) is analytic on \(\Omega \setminus K \) and that it has an analytic extension to all of \(\Omega \). Use this to prove that if \(F \) is an holomorphic function on \(\mathbb{C} \) with \(|F(z)| \leq |\sin(\pi z)| \) for all \(z \in \mathbb{C} \) then there is some complex number \(c \) with \(|c| \leq 1 \) such that \(F(z) = c \sin(\pi z) \) for all \(z \in \mathbb{C} \).