1. Determine the largest element in the set \(\{1, \sqrt{2}, \sqrt[3]{3}, \ldots, \sqrt{n}\} \). Carefully justify all your claims.

2. Let \(\{f_n\}_{n=0}^{\infty} \) be a uniformly convergent sequence of bounded real functions on \(\mathbb{R} \). Show that the sequence \(\{f_n\}_{n=0}^{\infty} \) is uniformly bounded on \(\mathbb{R} \), i.e., there exists an \(M > 0 \) such that for all \(n \) and all \(x \in \mathbb{R} \), \(|f_n(x)| \leq M \).

3. Let \(\{f_n\}_{n=1}^{\infty} \) be a sequence of functions that map \([0, 1]\) into \(\mathbb{R} \) with the following properties:
 (a) For every \(n \), \(f_n(0) = 0 \).
 (b) For every \(n \), \(f_n(1) = 1 \).
 (c) For every \(n \), the function \(f_n \) is monotone increasing.
 (d) For every \(x \in (0, 1) \), \(\lim_{n \to \infty} f_n(x) = 1 \).
 Prove that \(\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = 1 \).

4. Suppose that \(f \) is a continuous function on the interval \([0, 1]\) taking values in \([0, 2]\).
 Prove that there exists a number \(c \) in \([0, 1]\) such that \(f(c) = 2c \).
 Hint: Consider the function \(g(x) = f(x) - 2x \).

5. Consider the vector space \(V \) of all polynomials on interval \([0, 1]\), with the inner product on \(V \) given by
 \[\langle p, q \rangle = \int_0^1 p(x)q(x) \, dx. \]
 Find an orthogonal basis for the linear subspace \(H \) of \(V \) consisting of all polynomials of degree less than or equal to 2. You must verify the orthogonality and the basis properties.

6. Let \(A, B \) be two \(n \times n \) matrices over \(\mathbb{R} \).
 (a) Show that if 0 is an eigenvalue of \(AB \), then 0 is also an eigenvalue of \(BA \).
 (b) Show that if \(\lambda \neq 0 \) is an eigenvalue of \(AB \), then \(\lambda \) is also an eigenvalue of \(BA \).

7. Define the trace of a matrix \(A \in \mathcal{M}_{n \times n}(\mathbb{R}) \) to be \(\text{tr}(A) = a_{11} + a_{22} + \cdots + a_{nn} \), the sum of the diagonal entries of \(A \).
 (a) Prove that for \(A, B \in \mathcal{M}_{n \times n}(\mathbb{R}) \) we have \(\text{tr}(AB) = \text{tr}(BA) \).
 (b) Prove that if \(A = UCU^{-1} \) with \(U, C \in \mathcal{M}_{n \times n}(\mathbb{R}) \) and \(U \) invertible, then \(\text{tr}(A) = \text{tr}(C) \).

8. Suppose \(f : \mathbb{R}^2 \to \mathbb{R}^2 \) is differentiable with uniformly bounded partial derivatives
 \[\left| \frac{\partial f_i}{\partial x_j}(x_1, x_2) \right| \leq 1 \text{ for } i, j = 1, 2 \text{ and all } x_1, x_2 \in \mathbb{R} \]
 Prove that there exists a constant \(L \) such that
 \[\|f(x) - f(y)\| \leq L\|x - y\| \text{ for all } x, y \in \mathbb{R}^2 \]
 (Here \(f = (f_1, f_2) \) and \(x = (x_1, x_2) \).)