Faculty, Staff and Students

< Back to list

David Byer Nash

Title: Professor
Office: 603 Geology-Physics Building
Tel: 513-556-2834
Email: david.nash@uc.edu

Research Information

Research Support

  • Shaker Creek Aquifer Investigation, Warren County, Ohio. 1999 to 2008.
  • Education Grant, Ohio EPA. 1998.
  • Seismic Hazards Research Contract, USGS. 1984 to 1985.
  • Resident Research Associateship, National Research Council . 1981 to 1984.
  • Seismic Hazards Research Contract, USGS. 1979 to 1981.
  • Institute for Environmental Quality Fellowship. 1976 to 1977.
  • Hobbs Fellowship. 1975 to 1976.
  • Rackham Fellowship. 1971 to 1975.
  • Research Assistantship, NSF. 1970.
  • (PI), Nash, David, Hydrogeological Investigation of the Shaker Creek Aquifer, Warren and Butler Counties, Ohio, Warren County. (OSP99120), Closed. 10/01/1998 to 09/30/1999. Status: 002807-001.
  • (Collaborator), Nash, David; Townsend-Small, Amy, Year 1 DUKE funds for GMGWO, Duke Energy. (GMGWO), $125,000.00. 01/14/2014 to 01/13/2016. Status: Awarded.


Peer Reviewed Publications

  • Nash, David and Beaujon, James S., 2006, Modeling degradation of terrace scarps in Grand Teton National Park, USA: Geomorphology, no. 75, p. 400-407.
  • Nash, David, 2005, A general method for morphologic dating of hillslopes: Geology, no. 33, p. 693–695.
  • Nash, D. B., 1988, Detection of a Buried Horizon with a High Thermal-Diffusivity using Thermal Remote-Sensing: Photogrammetric Engineering and Remote Sensing, v. 54, no. 10, p. 1437, 1446.
  • Nash, D. B., 1985, Detection of Bedrock Topography Beneath a Thin Cover of Alluvium using Thermal Remote-Sensing: Photogrammetric Engineering and Remote Sensing, v. 51, no. 1, p. 77, 88.
  • Kahle, A. B., Shumate, M. S., Nash, D. B., 1984, Active Airborne Infrared-Laser System for Identification of Surface Rock and Minerals: Geophysical Research Letters, v. 11, no. 11, p. 1149, 1152.
  • Nash, D. B., 1984, Morphologic Dating of Fluvial Terrace Scarps and Fault Scarps Near West Yellowstone, Montana: Geological Society of America Bulletin, v. 95, no. 12, p. 1413, 1424.
  • Nash, D. B., 1981, Fault - a Fortran Program for Modeling the Degradation of Active Normal-Fault Scarps: Computers & Geosciences, v. 7, no. 3, p. 249, 266.
  • Nash, D., 1980, Forms of Bluffs Degraded for Different Lengths of Time in Emmet-County, Michigan, Usa: Earth Surface Processes and Landforms, v. 5, no. 4, p. 331, 345.
  • Nash, David B., 1994, Effective sediment-transporting discharge from magnitude-frequency analysis: Journal of Geology, v. 102, no. 1, p. 79, 95.
  • Nash, David B., 1986, Morphologic dating and modeling degradation of fault scarps: Active tectonics, p. 181, 194.
  • Nash, David B., 1985, Detection of bedrock topography beneath a thin cover of alluvium using thermal remote sensing: Photogrammetric Engineering and Remote Sensing, v. 51, no. 1, p. 77, 88.
  • Kahle, Anne B., Shumate, Michael S., Nash, David B., 1984, Active airborne infrared laser system for identification of surface rock and minerals: Geophysical Research Letters, v. 11, no. 11, p. 1149, 1152.
  • Kahle, Anne B., Gillespie, Alan R., Abrams, Michael J., Bartholomew, Mary Jane, Nash, David B., Palluconi, Frank D., Paylor, Earnest D., II, Shumate, Michael S., 1984, Discrimination of age and compositional units of alluvial fans in Death Valley, CA: Abstracts with Programs - Geological Society of America, v. 16, no. 6, p. 553.
  • Nash, D. B., 1983, Analytical modeling of fault scarp degradation; an homage to G. K. Gilbert: EOS, Transactions, American Geophysical Union, v. 64, no. 45, p. 859.


  • Bright, Daniel J., Nash, David B., Martin, Peter, 1997, Evaluation of ground-water flow and solute transport in the Lompoc area, Santa Barbara County, California: U. S. Geol. Surv., Denver, CO, United States, p. 113.
  • Bright, David J., Stamos, Christina L., Martin, Peter M., Nash, David B., 1992, Ground-water hydrology and quality in the Lompoc area, Santa Barbara County, California, 1987-88: U. S. Geol. Surv., Denver, CO, United States, p. 77 1 sheet.
  • Mayer, L., Nash, D., 1987, Catastrophic flooding, p. 410.
  • Nash, David B., 1981, Fault scarp morphology; indicator of paleoseismic chronology: U. S. Geol. Surv., Libr., Reston, VA, United States, p. 8.

Other Publications

  • Beljin, Milovan, Bowers, Mark T., Nash, David, and and Webb, George C., 2002. Final Report of Ground Water Monitoring Pilot Study North College Hill Cincinnati, Ohio.
  • Nash, David, 2000, A pilot I/I study of an area of frequent SSO’s within the Cincinnati MSD: Sanitary Sewer Overflow Remediation via I/I abatement.
  • Maynard, J.B., Lowell, T.V., and Nash, D.B., 2004, Geological and geochemical appraisal of the Shaker Creek Aquifer in the Vicinity of the Mason OH Wellfield.

Published Abstract

  • Nash, David, DeJong, Kees, Cicci, Gisela, and Reverman, Rebecca, 2007, Corduroy terrain near Cincinnati: mega-scale glacial grooves?: Geological Society of America Abstracts with Programs, v. 39, no. 6, p. 503.
  • Bullard jr., Reuben G. and Nash, David, 2006, Three-dimensional modeling of the degradation of Civil War earthworks: Geological Society of America Abstracts with Programs, no. 209-06.
  • Nash, David, 2003, Fine tuning morphologic dating of hillslopes: Geological Society of America Abstracts with Programs, no. 6, p. 23.

Experience & Service

Courses Taught

  • Geomorphology
    Level: Graduate
    Comments: Junior- to graduate-level, quantitative treatment of the mechanics of processes shaping the earth’s surface. The course is taken by students in Geology, Geography, Engineering, and Archeology.

Additional Information

New Page 2

 Hillslope evolution: I am particularly interested in changes in the morphologic changes in simple hillslopes developed unconsolidated materials as the slopes degrade with time. Most of the work has been funded by the USGS and has led to the application of the diffusion model of hillslope evolution to hillslopes formed by wave and fluvial undercutting, and by normal faulting. The work has led to the development of SLOPEAGE, a popular computer program for the morphologic dating of hillslopes. Much of this work is summarized in Nash (1986).
 Fluvial sediment transport: Fluvial processes dominate the formation of our local geology. Several of my graduate students have studied the influence of base-level rise on channel aggradation patterns (i.e., do downstream factors influence base level in upstream reaches of a fluvial system?). I have also re-evaluated the Wolman and Miller Magnitude-Frequency analysis as it applies to the transport of suspended sediment (Nash, 1994).
 Ground-Water Geology

 I hold a faculty part-time appointment with the California District of the USGS, WRD as a ground-water hydrologist. I was involved in a major ground-water flow and solute transport model of the Lompoc basin (Bright, Nash., and Martin, 1997) and am currently working on a ground-water flow model for the Menlo Park area.
 Most of my current graduate students are involved in ground-water studies of the local area (e.g., Kris Field's thesis). A topic of particular relevance to the local ground-water system is the interaction of surface water and ground water in alluvial aquifers. One of my students is conducting a study in cooperation with the City of Springfield, Ohio on the interaction of Mad River with the well field. As a class project in Well-Head Protection, my students, colleagues, and I worked on a ground-model and well-head protection area delineation for various public water suppliers in Warren County, Ohio.
 Remote Sensing
 I developed an interest in thermal infrared geologic remote sensing while a National Research Council postdoctoral fellow at the NASA Jet Propulsion Laboratory. My worked involved the feasibility of using thermal remote sensing to detect thinly buried geologic features (a simple, non-geologic example of the concept may be found here). This work is summarized in Nash (1988) (which received the