Faculty

< Back to list

Dennis W. Grogan

Title: Professor
Office: 820H Rieveschl Hall
Tel: 513-556-9748
Email: dennis.grogan@uc.edu

Education

  • Ph.D., University of Illinois, Urbana-Champaign, 1985.

Research Information

Research Interests

MICRO-ORGANISMS FROM EXTREME ENVIRONMENTS
MOLECULAR BIOLOGY OF HYPERTHERMOPHILES
GENETICS OF ARCHAEA

Much of the biochemical diversity of life on earth is embodied in single-celled organisms.  The smallest and most widely distributed of these consist of extremely small "prokaryotic" cells that lack nuclei or other membranous organelles.  The best-known prokaryotes, bacteria, include a few species that cause disease, but the vast majority of bacteria mediate geochemical cycling, degrade toxic pollutants, or produce antibiotics or other useful products. 

Over 35 years ago, Carl Woese discovered a second, evolutionarily distinct, group of prokaryotes through analysis of ribosomal RNA sequences.  Much less is known about this second lineage, called Archaea. Many of the archaea that have been successfully grown in pure culture come from hostile or otherwise unusual environments, yet they show certain similarities to eukaryotic cells at the molecular level.

The Grogan lab focuses on thermoacidophilic archaea of the genus Sulfolobus. These species normally live in acidic hot springs, and their optimal growth conditions (80º C and pH 3) quickly inactivate the DNA, RNA, enzymes, and membranes found in "ordinary" cells.  We seek to understand in molecular terms how the Sulfolobus cell functions under these harsh conditions.  Sulfolobus cells are known to have intrinsically thermostable enzymes and a cell-envelope architecture found only in archaea. It is less clear how they maintain the integrity of their genomes under geothermal conditions, however, as several protein families associated with DNA repair in eukaryotes, bacteria, and even mesophilic archaea are missing from Sulfolobus species and other hyperthermophilic archaea.

To address this challenge, research in the Grogan lab emphasizes experimental techniques that analyze genetic processes in vivo.  We have isolated various mutant strains of Sulfolobus acidocaldarius and used them to investigate archaeal cell division, responses to DNA damage, transfer and recombination of chromosomal DNA, and the fidelity of genome replication (see Publications list).  Current interests focus on functional properties of homologous recombination, DNA repair, and trans-lesion DNA synthesis.

Research Support

  • (Trainee), Dennis Grogan, Role of cross-link formation in Pol Zeta-dependent mutagenesis in S. cerevisiae, National Institute of General Medical Sciences. (1 F33 GM088933-01), $59000. 10-2009 to 10-2010. Status: Completed.
  • (Principle Investigator), Dennis Grogan, Homologous recombination in hyperthermophilic archaea, NIH. (1 R15 GM097704-01), 300000. 2011 to 2014. Status: Denied.
  • (PI), Grogan, Dennis, Functional Assessment of Mismatch Repair and Nucleotide Excision Repair in Sulfolobus Species, National Science Foundation. (MCB 0543910), $369,999.00. 03/01/2006 to 02/28/2011. Status: Completed.
  • (PI), Grogan, Dennis, Enhancing Education through Research Experiences, and Investigations of Gene Functions in Archaea, National Science Foundation. (MCB-9733303-NSF-NCE), $469,585.00. 06/15/1998 to 05/31/2005. Status: Closed.
  • (P.I.), Dennis Grogan, Genetic Assays for Molecular Interactions in Sulfolobus Spp., University Research Council. (Faculty Research Grant), 6300. 01-2011 to 12-2011. Status: Completed.
  • (Co-PI), Raven Huang, P.I.; D. Grogan, W. Whitman, B. Wilson, J. Cronan co-PIs, Structure and Function of the Elongator complex, National Institutes of Health. 50000 + indirect. 2013 to 2018. Status: Denied.
  • (P.I.), D. Grogan, Processes and genes controlling mutation in the Sulfolobus genome, National Science Foundation. (MCB1330493), 490008. 08-2013 to 07-2016. Status: Denied.
  • (Co-PI), R.Huang (PI); W. Whitman, B. Wilson, D. Grogan, Structure and Function of the Elongator Complex, National Institutes of Health. (1R01GM107533-01A1), UC subaward: $50000 + indirect. 04-2014 to 03-2019. Status: Pending.
  • (P.I.), D. Grogan, Mechanisms of hyperthermophilic archaea that cope with unrepaired DNA damage, National Science Foundation. (1412046), 483941. 07-2014 to 06-2017. Status: Pending.
  • (PI), Grogan, Dennis, Structure and Function of the Elongator Complex, National Institute of General Medical Sciences. (2013-01835-02 / R01 GM107533), $37,000.00. 09/30/2014 to 07/31/2016. Status: Active.

Publications

Peer Reviewed Publications

  • Sakofsky CJ, Grogan DW. 2013. Endogenous mutagenesis in recombinant Sulfolobus plasmids. J Bacteriol. 195: 2776-2785
  • Kissling,G, Grogan DW, Drake JW. 2013. Confounders of mutation-rate estimators: selection and phenotypic lag in Thermus thermophilus.  Mutat. Res. 749:16-20
  • Grogan, DW, Jinks-Robertson S. 2012. Formaldehyde-induced mutagenesis in Saccharomyces cerevisiae: molecular properties and the roles of repair and bypass systems.  Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
  • Sakofsky CJ, Foster PL, Grogan DW. 2012. Roles of the Y-family DNA polymerase Dbh in accurate replication of the Sulfolobus genome at high temperature.  DNA Repair (Amst).11:391-400
  • Mao, DM and Grogan, DW. 2012. Genomic evidence of rapid, global-scale gene flow in a Sulfolobus species. Internat. Soc. Microb. Ecol. J. 6: 1613-1616
  • Mao D, Grogan DW. 2012. Heteroduplex formation, mismatch resolution, and genetic sectoring during homologous recombination in the hyperthermophilic archaeon Sulfolobus acidocaldarius. Frontiers Microbiol. 3: 192
  • Sakofsky CJ, Runck LA, Grogan, DW. 2011. Sulfolobus mutants, generated via PCR products, which lack putative enzymes of UV photoproduct repair. Archaea 2011:864015
  • Ajon M, Fröls S, van Wolferen M, Stoecker K, Teichmann D, Driessen AJ, Grogan DW, Albers SV, Schleper C. 2011. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type-IV pili. Mol Microbiol. 82:807-17
  • Grogan, D.W., Rockwood J. 2010. Discontinuity and limited linkage in the homologous recombination system of a hyperthermophilic archaeon. Journal of Bacteriology 192: 4660-4668
  • Grogan D.W. 2009.  Homologous recombination in Sulfolobus acidocaldarius: genetic assays and functional properties. Biochemical Society Transactions. 37:88-91
  • Mackwan, R.R., Carver, G.T., Kissling, G.E., Drake, J.W., Grogan, D.W. 2008. The rate and character of spontaneous mutation in Thermus thermophilus. Genetics 180: 17-25.
  • Grogan, D.W., Ozarzak, M.A., & Bernander, R. (2008). Variation in gene content among geographically diverse Sulfolobus isolates. Environ. Microbiol., 10, 137-146.
  • Grogan, Dennis W., Stengel, Kristy R. (2008). Recombination of synthetic oligonucleotides with prokaryotic chromosomes: substrate requirements of the Escherichia coli. Molecular microbiology, 69(5), 1255, 1265.
  • Mackwan, Reena R., Carver, Geraldine T., Drake, John W., Grogan, Dennis W. (2007). An unusual pattern of spontaneous mutations recovered in the halophilic archaeon Haloferax volcanii. Genetics, 176(1), 697, 702.
  • Berkner, S., Grogan, D.W., Albers, S.V., & Lipps, G. (2007). Small multicopy, non-integrative shuttle vectors based on the plasmid pRN1 for Sulfolobus acidocaldarius and Sulfolobus solfataricus, model organisms of the (cren-)archaea. Nucleic Acids Research, 35.
  • Blount, Z.D., & Grogan, D.W. (2005). New Insertion Sequences of Sulfolobus: Functional properties and implications for genome evolution in hyperthermophilic archaea. Molecular Microbiology, 55, 312-325.
  • Hansen, J.E., Dill, A.C., & Grogan, D.W. (2005). Conjugational genetic exchange in the hyperthermophilic archaeon Sulfolobus acidocaldarius: Intragenic recombination with minimal dependence on marker separation. Journal of Bacteriology, 187, 805-809.
  • Whitaker, R.J., Grogan, D.W., & Taylor, J.W. (2005). Recombination shapes the natural population structure of the hyperthermophilic archaeon Sulfolobus islandicus. Molecular Biology and Evolution, 22(12), 2354-2361.
  • Kurosawa, N., & Grogan, D.W. (2005). Homologous recombination of exogenous DNA with the Sulfolobus acidocaldarius genome: Properties and uses. FEMS Microbiology Letters, 253(1), 141-149.
  • Grogan, D.W. (2004). Stability and repair of DNA in hyperthermophilic archaea. Current Issues in Molecular Biology, 6, 137-144.
  • Whitaker, R.J., Grogan, D.W., & Taylor, J.W. (2003). Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science, 301, 976-978.
  • Grogan, D. W., Hansen, J. E. (2003). Molecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius. Journal of Bacteriology, 185(4), 1266, 1272.
  • Grogan, D. W. (2003). Cytosine methylation by the SuaI restriction-modification system: Implications for genetic fidelity in a hyperthermophilic archaeon. Journal of Bacteriology, 185(15), 4657, 4661.
  • Reilly, M. S., Grogan, D. W. (2002). Biological effects of DNA damage in the hyperthermophilic archaeon Sulfolobus acidocaldarius. FEMS microbiology letters, 208(1), 29, 34.
  • Grogan, D. W., Carver, G. T., Drake, J. W. (2001). Genetic fidelity under harsh conditions: Analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 7928, 7933.
  • Reilly, M. S., Grogan, D. W. (2001). Characterization of intragenic recombination in a hyperthermophilic archaeon via conjugational DNA exchange. Journal of Bacteriology, 183(9), 2943, 2946.
  • Grogan, D. W. (2000). The question of DNA repair in hyperthermophilic archaea. Trends in microbiology, 8(4), 180, 185.
  • Bernander, R., Poplawski, A., Grogan, D. W. (2000). Altered patterns of cellular growth, morphology, replication and division in conditional-lethal mutants of the thermophilic archaeon Sulfolobus acidocaldarius. Microbiology-Uk, 146, 749, 757.
  • Schmidt, K. J., Beck, K. E., Grogan, D. W. (1999). UV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: Implications for DNA repair, conjugation and homologous recombination at extremely high temperatures. Genetics, 152(4), 1407, 1415.
  • Maiorano, J. N., Grogan, D. W. (1999). Extremely thermostable orotidine-5 ';-monophosphate decarboxylase from the archaeon Sulfolobus acidocaldarius. FEMS microbiology letters, 174(1), 81, 87.
  • Jacobs, K. L., Grogan, D. W. (1998). Spontaneous mutation in a thermoacidophilic archaeon: evaluation of genetic and physiological factors. Archives of Microbiology, 169(1), 81, 83.
  • Ghane, F., Grogan, D. W. (1998). Chromosomal marker exchange in the thermophilic archaeon Sulfolobus acidocaldarius: physiological and cellular aspects. Microbiology-Uk, 144, 1649, 1657.
  • Grogan, D. W. (1998). Hyperthermophiles and the problem of DNA instability. Molecular microbiology, 28(6), 1043, 1049.
  • Grogan, D. W. (1997). Photoreactivation in an archaeon from geothermal environments. Microbiology-Uk, 143, 1071, 1076.
  • Wood, E. R., Ghane, F., Grogan, D. W. (1997). Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light. Journal of Bacteriology, 179(18), 5693, 5698.
  • Jacobs, K. L., Grogan, D. W. (1997). Rates of spontaneous mutation in an archaeon from geothermal environments. Journal of Bacteriology, 179(10), 3298, 3303.
  • Grogan, D. W., Cronan, J. E. (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews, 61(4), 429, &.
  • Grogan, D. W. (1996). Organization and interactions of cell envelope proteins of the extreme thermoacidophile Sulfolobus acidocaldarius. Canadian journal of microbiology, 42(11), 1163, 1171.
  • Grogan, D. W. (1996). Isolation and fractionation of cell envelope from the extreme thermo-acidophile Sulfolobus acidocaldarius. Journal of microbiological methods, 26(1-2), 35, 43.
  • Grogan, D. W. (1996). Exchange of genetic markers at extremely high temperatures in the archaeon Sulfolobus acidocaldarius. Journal of Bacteriology, 178(11), 3207, 3211.
  • Wang, A. Y., Grogan, D. W., Cronan, J. E. (1992). Cyclopropane Fatty-Acid Synthase of Escherichia-Coli - Deduced Amino-Acid-Sequence, Purification, and Studies of the Enzyme Active-Site. Biochemistry, 31(45), 11020, 11028.
  • Grogan, D. W. (1989). Phenotypic Characterization of the Archaebacterial Genus Sulfolobus - Comparison of 5 Wild-Type Strains. Journal of Bacteriology, 171(12), 6710, 6719.
  • Grogan, D. W. (1988). Temperature-Sensitive Murein Synthesis in an Escherichia-Coli Pdx Mutant and the Role of Alanine Racemase. Archives of Microbiology, 150(4), 363, 367.
  • Grogan, D. W. (1986). Auxotrophic Basis for the Envelope-Defective Phenotype of an Escherichia-Coli Mutant. Current microbiology, 14(2), 107, 111.
  • Grogan, D. W., Cronan, J. E. (1986). Characterization of Escherichia-Coli Mutants Completely Defective in Synthesis of Cyclopropane Fatty-Acids. Journal of Bacteriology, 166(3), 872, 877.
  • Grogan, D. W., Cronan, J. E. (1984). Cloning and Manipulation of the Escherichia-Coli Cyclopropane Fatty-Acid Synthase Gene - Physiological-Aspects of Enzyme Overproduction. Journal of Bacteriology, 158(1), 286, 295.
  • Grogan, D. W. (1984). Interaction of Respiration and Luminescence in a Common Marine Bacterium. Archives of Microbiology, 137(2), 159, 162.
  • Grogan, D. W., Cronan, J. E. (1984). Genetic-Characterization of the Escherichia-Coli Cyclopropane Fatty-Acid (Cfa) Locus and Neighboring Loci. Molecular & General Genetics, 196(2), 367, 372.
  • Grogan, D. W., Cronan, J. E. (1983). Use of Lambda Phasmids for Deletion Mapping of Non-Selectable Markers Cloned in Plasmids. Gene, 22(1), 75, 83.
  • Grogan, D. W. (1983). The Response of Bacterial Luminescence to an Inhibitor of Fatty-Acid Biosynthesis. Archives of Microbiology, 136(2), 137, 139.
  • Rockwood, J, Mao, D, Grogan DW. 2013. Homologous recombination in the archaeon Sulfolobus acidocaldarius: effects of DNA substrates and mechanistic implications. Microbiology 159: 1888-1899
  • Grogan DW. 2015. Understanding DNA repair in hyperthermophilic archaea: Persistent gaps and other reasons to focus on the fork. 2015. Archaea 2015:942605.
  • Sakofsky CJ, Grogan DW. Lesion-induced mutation in the hyperthermophilic archaeon Sulfolobus acidocaldarius and its avoidance by the Y-Family DNA polymerase Dbh. Genetics. 2015 Oct;201(2):513-23.
  • Hauber DJ, Grogan DW, DeBry RW. Mutations to less-preferred synonymous codons in a highly expressed gene of Escherichia coli: Fitness and epistatic interactions. PLoS One. 2016 Jan 4;11(1):e0146375.
  • Mao D, Grogan DW. 2017. How a genetically stable extremophile evolves: Modes of genome diversification in the archaeon Sulfolobus acidocaldarius. J. Bacteriol. 199:e00177-17

Book Chapter

  • Grogan, D.W. 2012. Chapter 50: Physiology of Prokaryotic Cells.  In N. Sperelakis (Ed) Cell Physiology Sourcebook, fourth edition: Essentials of Membrane Biophysics. pp. 891-906. Academic Press/Elsevier, London
  • Grogan D.W. (2006). Archaea - Physiology, Molecular Biology and Evolution. In Garrett, R.A. and Klenk, H.-P. (Eds.), Genetic properties of Sulfolobus acidocaldarius and related archaea Malden, MA: Blackwell Publishing.
  • Grogan D.W. (2007). Archaea: Molecular and Cellular Biology. In R. Cavicchioli (Eds.), Chapter 5: Mechanisms of genome stability and evolution (pp. 120-138). American Society for Microbiology: Washington, D.C.
  • White, M.F. & Grogan, D.W. (2008). Thermophiles: Biology and technology at high temperatures. In F.T. Robb et al. (Eds.), Chapter 10: DNA stability and repair (pp. 179-187). Boca Raton FL: CRC Press.
  • Grogan, D.W. (2008). Thermophiles: Biology and technology at high temperatures. In F.T. Robb et al. (Eds.), Chapter 12: Genetic analysis in extremely thermophilic bacteria: An overview (pp. 205-211). Boca Raton FL: CRC Press.
  • Grogan, D.W. (2016) Chapter 18: Proteins of DNA Replication from Extreme Thermophiles: PCR and Beyond.  In P.H. Rampelotto (Ed) Biotechnology of Extremophiles: Advances and challenges. Springer International Publishing, Switzerland.

Editorial

  • Ettema TJ, Lindås AC, Hjort K, Poplawski AB, Kaessmann H, Grogan DW, Kelman Z, Andersson AF, Pelve EA, Lundgren M, Svärd SG. 2014. Rolf Bernander (1956-2014): pioneer of the archaeal cell cycle. Mol Microbiol. 92:903-9.

Encyclopedia Article

  • Extreme Thermophiles. In: eLS 2013, John Wiley & Sons Ltd: Chichester http://www.els.net/
  • Grogan, D.W. (2004). Encyclopedia of Genetics. In Ness, B.D. (Eds.), Archaea (pp. 45-48). Pasadena: Salem Press Inc.

Presentations & Lectures

Invited Presentations

  • (08/21/2008). Homologous recombination in Sulfolobus acidocaldarius: Genetic assays and functional properties Biochemical Society Focused Meeting: “Molecular Biology of Archaea”, Saint Andrews (Scotland).
  • Dennis Grogan (08/04/2011). “Genome stability in Sulfolobus: Genetic analysis of molecular mechanisms” Gordon Research Conference “Archaea: Ecology, Metabolism and Molecular Biology”, Waterville Valley, N.H..

Poster Presentations

  • Dominic M. Mao and Dennis W. Grogan (08/03/2011). “Investigating homologous recombination using exogenous linear DNA in Sulfolobus acidocaldarius” Gordon Research Conference “Archaea: Ecology, Metabolism and Molecular Biology”, Waterville Valley, N.H..
  • Cynthia J. Sakofsky, Patricia L. Foster, and Dennis W. Grogan (08/03/2011). “Biological functions of the Sulfolobus acidocaldarius Dbh trans-lesion DNA polymerase” Gordon Research Conference “Archaea: Ecology, Metabolism and Molecular Biology”, Waterville Valley, N.H..
  • Cynthia J. Sakofsky, Dennis W. Grogan (07-2009). Spontaneous mutation in pRN1-derived shuttle vectors propagated in Sulfolobus acidocaldarius Gordon Research Conference “Archaea: Ecology, Metabolism and Molecular Biology”, Waterville Valley, N.H..
  • Dominic Mao, Dennis W. Grogan (07-2009). Development of a molecular-genetic assay for DNA mismatch repair (MMR) in Sulfolobus Gordon Research Conference “Archaea: Ecology, Metabolism and Molecular Biology”, Waterville Valley, N.H..

Colloquia

  • (05/12/2008). Department of Integrated Natural Sciences, Arizona State University West Campus, Phoenix AZ.
  • (10/23/2008). Department of Biology, Georgia Institute of Technology, Atlanta GA.
  • (02/04/2009). Department of Microbiology, University of Illinois, Urbana IL.
  • (11/05/2010). Department of Microbiology, Southern Illinois University, Carbondale IL.

Experience & Service

Service

  • Committee Member, Graduate Affairs Committee,
  • Co-Chair, Molecular Biomarkers Senior search committee,
  • Editorial Board Member, Journal of Bacteriology
  • Editorial Board Member, Archaea

Other Experience and Professional Memberships

  • 09/01/2009 to 08/31/2010 ,Academic leave, sabbatical research, Duke University School of Medicine, Durham NC

Courses Taught

  • 15-BIOL-552 GEN MICRO LAB
    Level: Undergraduate
    Term: 09W

  • 15-BIOL-800 GRAD TOPICS BIOLOGY
    Level: Graduate
    Term: 08A
    Comments: (topic: Experimental molecular genetics)
  • 15-BIOL-597 MOLEC MICROBIOLOGY
    Level: Undergraduate
    Term: 09S

  • 15-BIOL-552 GEN MICRO LAB
    Level: Undergraduate
    Term: 11W

  • 15-BIOL-597 MOLEC MICROBIOLOGY
    Level: Undergraduate
    Term: 11S

  • Molecular Microbiology
    Molecular Microbiology
    Level: Undergraduate
    Term: 12S

  • -BIOL-4011 MICROBIOLOGY
    Level: Undergraduate
    Term: 12U
    Comments: Taught FALL SEMESTER 2012
  • -BIOL-4062 MOLEC BIOL PROKARY
    Level: Undergraduate
    Term: 13SS

  • -BIOL-4011 MICROBIOLOGY
    Level: Undergraduate
    Term: 13FS

  • Molecular Mechanisms of Genome Stability
    Molecular Mechanisms of Genome Stability
    Level: Graduate
    Term: 13SS

  • -BIOL-4011 MICROBIOLOGY
    Level: Undergraduate
    Term: 16FS

  • -BIOL-4062 MOLEC BIOL PROKARY
    Level: Undergraduate
    Term: 16SS