Alumni NEWS


Dr. Oates Eltawil worked for the University of California, Los Angeles. She received her PhD from UC in 1975. She is survived by her husband Dean Eltawil, and their daughter Kasey. A memorial service will be held on October 23, 2002 at 10 am in the UC chargers room.

Mohammad K. Rabbani (1981) was re-elected a fellow of the American Physical Society in 2003. Together with his wife Ning Rabbani, he co-chaired the 2003 Inverse Problems in Engineering Symposium (IPES 2003) held at UC this August. The conference on Computability and Complexity in Analysis held at UC last year. She is a full time job at the University of Cincinnati.

Tim Hodges: 1997 PhD, is serving as acting associate dean for the College branch), and Information Services at Proctor & Gamble. He has been a professor at the University of Cincinnati since 1997. Hodges received his PhD from UC in 1997. He is currently working on the study of turbulence and combustion.

Chris McCord: 1995 PhD, is serving as acting associate dean for the College branch), and Information Services at Proctor & Gamble. He has been a professor at the University of Cincinnati since 1997. Hodges received his PhD from UC in 1997. He is currently working on the study of turbulence and combustion.

Xiaodong Lin, 1995, received the Collaborative Research Grant from the National Science Foundation. He will be working with sponsored research.

R E T I R E S

Dave Herron (Epidemiology 1967) is one of the most important and influential mathematicians ever to serve on the faculty of the University of Cincinnati. His research on mathematical biology, particularly his work on the dynamics of infectious diseases, has had a profound impact on the field. Herron was a key figure in the development of modern epidemiological theory and was a leading advocate for the importance of mathematical modeling in public health.

Ken Meyer is one of the most important and influential mathematicians ever to serve on the faculty of the University of Cincinnati. His research on mathematical biology, particularly his work on the dynamics of infectious diseases, has had a profound impact on the field. Herron was a key figure in the development of modern epidemiological theory and was a leading advocate for the importance of mathematical modeling in public health.

Ken Meyer is one of the most important and influential mathematicians ever to serve on the faculty of the University of Cincinnati. His research on mathematical biology, particularly his work on the dynamics of infectious diseases, has had a profound impact on the field. Herron was a key figure in the development of modern epidemiological theory and was a leading advocate for the importance of mathematical modeling in public health.

View from the Editor

We’d like to remind you that the “pull-out” section on the right side of the page contains a list of recent topics covered in the department’s newsletter. This section will be updated periodically, so please check back for the latest news and information.

If you have any questions or comments, please contact the editor at view@math.uc.edu. We’d love to hear from you!
Dear Alumni and Friends,

From the HYPOTHEISI

Magda Peligrad was awarded the Charles Phelps Taft Professorship of Mathematics this summer. Peligrad joins four other outstanding UC faculty members currently holding this prestigious designation. (David Minda of our department is one of the four; Ken Meyer became Taft Professor Emeritus upon his recent retirement.) Taft Professors are chosen based on their national recognition, significant contributions to the discipline, and the potential to hold, build, and deploy new ideas to improve the education of students and the advancement of research. Researchers share these characteristics with the recipients of this year's Richard E. Greenholz award from the College of Arts and Sciences. This year saw the retirement of Ken Meyer, one of the department's most prominent scholars. Fortunately he plans to remain with us as a visiting professor for both full-time day students and part-time evening students.

Thanks to all of you who wrote in with news last year. Keep those e-mails coming! The graphics used for this story were created by Carl McTague to accompany his program notes. You can read more about his ideas at his website: http://www.math.uc.edu/~mcgue/ and fiddle performances there, too.

One of the great pleasures of being a professor at UC is watching students grow both as mathematicians and as people. This summer Charles Phelps Taft Professorship of Mathematics, Professor Emeritus, and a former student of Max Stein, has the potential to hold, build, and deploy new ideas to improve the education of students and the advancement of research. Researchers share these characteristics with the recipients of this year's Richard E. Greenholz award from the College of Arts and Sciences. This year saw the retirement of Ken Meyer, one of the department's most prominent scholars. Fortunately he plans to remain with us as a visiting professor for both full-time day students and part-time evening students.

Thanks to all of you who wrote in with news last year. Keep those e-mails coming! The graphics used for this story were created by Carl McTague to accompany his program notes. You can read more about his ideas at his website: http://www.math.uc.edu/~mcgue/ and fiddle performances there, too.

McTague uses abstract mathematical ideas to study and create music. He found his notation in "bird sound," a metaphor for the relationships between notes in music. McTague's work is based on the chord progression (ii-V-I), which explains the seventh power in the title. This work is based on the chord progression (ii-V-I), which explains the seventh power in the title. This work is based on the chord progression (ii-V-I), which explains the seventh power in the title. This work is based on the chord progression (ii-V-I), which explains the seventh power in the title. This work is based on the chord progression (ii-V-I), which explains the seventh power in the title. This work is based on the chord progression (ii-V-I), which explains the seventh power in the title.