MATHEMATICS QUALIFYING EXAM
AUGUST 2014
Four Hour Time Limit

\(\mathbb{R} \) is the field of real numbers and \(\mathbb{R}^n \) is \(n \)-dimensional Euclidean space.

Proofs, or counter examples, are required for all problems.

1. Let \(\mathbb{R} \xrightarrow{f} \mathbb{R} \) be a continuous function.
 (a) Show that for each \(x \in \mathbb{R} \),
 \[
 f(x) - f(0) = \sum_{k=0}^{\infty} \left[f\left(\frac{x}{2^k} \right) - f\left(\frac{x}{2^{k+1}} \right) \right].
 \]
 (b) Explain what it means to say that \(f \) is differentiable at \(x = 0 \).
 (c) Suppose that \(\lim_{h \to 0} \frac{f(h) - f(h/2)}{h/2} = 0 \). Use part (a), or some other method, to prove that \(f \) is differentiable at \(x = 0 \) with \(f'(0) = 0 \).

2. Let \([0, 1] \xrightarrow{g} \mathbb{R} \) be a continuous function.
 (a) Show that for each \(\varepsilon \in (0, 1) \),
 \[
 \lim_{n \to +\infty} \int_{0}^{1-\varepsilon} f(x^n) \, dx = (1 - \varepsilon) f(0).
 \]
 (b) Find
 \[
 \lim_{n \to +\infty} \int_{0}^{1} f(x^n) \, dx.
 \]
 (Hint: Start by explaining why \(f \) is bounded.)

3. Suppose that \(A \) and \(B \) are \(3 \times 3 \) matrices and \(AB \) is nonsingular. Prove that both \(A \) and \(B \) are nonsingular.

4. Let \(m \) and \(n \) be positive integers with \(m > n \). Prove that there do not exist \(m \times n \) and \(n \times m \) matrices \(A \) and \(B \) such that \(AB = I_m \) (the \(m \times m \) identity matrix).

5. Let \(A \) be an \(n \times n \) matrix whose entries are all real numbers. Suppose that \(A \) has \(n \) distinct non-zero eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_n \) in \(\mathbb{R} \). Let \(v_i \in \mathbb{R}^n \) be an eigenvector of \(A \) with corresponding eigenvalue \(\lambda_i \). Prove that \(v_1, \ldots, v_n \) are linearly independent.

6. Let \([0, 1] \xrightarrow{g} \mathbb{R} \) be a continuous function. Suppose that \((f_n)_{n=1}^{\infty} \) is a sequence of continuous functions \(f_n : [0, 1] \to [0, 1] \) that converges uniformly on \([0, 1]\) to some function \(f : [0, 1] \to [0, 1] \). Prove that \((g \circ f_n)_{n=1}^{\infty}\) converges uniformly to \(g \circ f \) on \([0, 1]\).
(7) Define $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}$ by
\[
f(x, y) := \begin{cases}
 \frac{xy^2}{x^2 + y^2} & \text{when } (x, y) \neq 0, \\
 0 & \text{when } (x, y) = 0.
\end{cases}
\]
Prove that the partial derivatives $f_x(0, 0)$ and $f_y(0, 0)$ both exist, but f is not differentiable at $(0, 0)$.

(8) Let $C := \{(x, y) \in \mathbb{R}^2 \mid (x + y)^3 = 3x + 5y\}$. Consider the point $p := (1, 1)$ in C. Prove that there is an open neighborhood W of p such that $C \cap W$ is the graph $y = f(x)$ of some smooth function f defined near $x = 1$, and calculate $f'(1)$.