Sample Questions for the PhD Preliminary Exam in Algebra and Topology

Department of Mathematical Sciences
University of Cincinnati
January 2013

Algebra

(1) Consider the polynomial \(f(x) = x^6 - 4x^3 + 1 \in \mathbb{Z}[x] \) which you may assume without proof to be irreducible. Let \(K \) be the splitting field of \(F \) over \(\mathbb{Q} \).
 a) Find all the complex roots of \(f \). Show, in particular, that \(f \) has two real roots whose product is \(1 \).
 b) Let \(\alpha \) be a real root of \(f \). Show that \(K = \mathbb{Q}(\alpha, \omega) \) where \(\omega \) is a primitive cube root of one. Deduce that \(|\text{Gal}(K, \mathbb{Q})| = 12 \).
 c) Show that \(\text{Gal}(K, \mathbb{Q}) \) is a dihedral group.

(2) Let \(K \) be a field with 64 elements and denote by \(\mathbb{F}_2 \) the field with 2 elements.
 a) Find all subfields of \(K \).
 b) How many elements \(\alpha \in K \) are there such that \(\mathbb{F}_2(\alpha) = K \)?
 c) Determine using (b) the number of irreducible polynomials of degree 6 over \(\mathbb{F}_2 \).

(3) Let \(F \) be a field.
 a) Outline the proof of the fact that \(F[x] \) is a PID.
 b) Let \(R = \{ f(x) \in F[x] \mid f'(0) = 0 \} \). Show that \(R \) is not a UFD and find an ideal that is not principal.
 c) Conversely, show that if \(F \) is a field and \(\nu : R \to \mathbb{Z}^+ \) is a surjective map satisfying the properties above then the set
 \[D = \{ a \in F \mid \nu(a) \geq 0 \} \]
 is a principal ideal domain with a unique non-zero prime ideal.

(4) Let \(k \) be a field of characteristic \(p > 0 \) and let \(0 \neq c \in k \). Show that the polynomial \(x^p - x - c \) is irreducible if and only if it has no roots in \(k \). Show that this is false if the characteristic of \(k \) is 0.

(5) A field extension \(K \supset F \) is called biquadratic if \([K : F] = 4 \) and \(K \) is generated over \(F \) by the roots of two irreducible quadratic polynomials. Prove that the extension \(K \supset F \) is biquadratic if and only if it is Galois with Galois group the Klein four group.

(6) Let \(R \) be a principal ideal domain with a unique non-zero prime ideal \((p) \).
 a) Show that every element of \(R \) can be expressed uniquely in the form \(up^n \) for some non-negative integer \(n \) and unit \(u \).
 b) Let \(\nu : R \to \mathbb{Z}^+ \) be the function given by \(\nu(up^n) = n \). Show that \(\nu \) satisfies
 \[
 \nu(ab) = \nu(a) + \nu(b);
 \nu(a + b) \geq \min(\nu(a), \nu(b));
 \]
 c) Conversely, show that if \(F \) is a field and \(\nu : R \to \mathbb{Z}^+ \) is a surjective map satisfying the properties above then the set
 \[D = \{ a \in F \mid \nu(a) \geq 0 \} \]
 is a principal ideal domain with a unique non-zero prime ideal.

(7) (a) State and prove Eisenstein’s criterion for the irreducibility of polynomials over \(\mathbb{Z} \).
 (b) Use this result to prove that the polynomial \([(x + 1)^p - 1]/x \) is irreducible if \(p \) is prime.
(c) Deduce that the cyclotomic polynomial $\Phi_p(x) = 1 + x + x^2 + \cdots + x^{p-1}$ is irreducible if p is prime.

(8) (a) Prove that $x^4 - 2x^2 - 2$ is irreducible over \mathbb{Q}.
(b) Show that its roots are $\pm\sqrt{1 \pm \sqrt{3}}$.
(c) Let $K_1 = \mathbb{Q}(\sqrt{1 + \sqrt{3}})$, $K_2 = \mathbb{Q}(\sqrt{1 - \sqrt{3}})$. Show that $K_1 \neq K_2$ and that $K_1 \cap K_2 = \mathbb{Q}(\sqrt{3})$.
(d) Determine the galois group of $x^4 - 2x^2 - 2$ over \mathbb{Q}.

(9) Let k be a field and let $f(x, y) \in k[x, y]$. Prove that if $f(x, x) = 0$, then $f(x, y)$ is divisible by $x - y$. (Hint: use induction on the degree of f as a polynomial in x with coefficients in $k[y]$).

(10) Let $f(x) = x^4 + 5x + 5$.
(a) Find the roots of f. What is the Galois group of f over the real numbers \mathbb{R}?
(b) Show that f is irreducible over \mathbb{Q}.
(c) Show that the splitting field of f has degree 4 over \mathbb{Q} and find the Galois group of f over \mathbb{Q}.
Topology

(1) Prove or disprove.
 (a) The product of two quotient maps is a quotient map.
 (b) The product of connected spaces is connected.

(2) Prove that a product space $\prod_{\lambda \in \Lambda} X_{\lambda}$ is contractible if and only if for each $\lambda \in \Lambda$, the space X_{λ} is contractible.

(3) Given a topological space X, the cone $C(X)$ of the space X is the topological space $X \times [0, 1]/X \times \{0\}$ (i.e. $C(X)$ is the quotient space obtained from $X \times [0, 1]$ by collapsing $X \times \{0\}$ to a point), and the suspension $\Sigma(X)$ of X is the topological space $X \times [0, 1]$, where for $(a, s), (b, t) \in X \times [0, 1]$, $(a, s) \sim (b, t)$ if $s = t$ and either $a = b$, or $t = 0$, or $t = 1$ (i.e. $\Sigma(X)$ is the quotient of $X \times I$ obtained by identifying $X \times \{0\}$ to a single point and $X \times \{1\}$ to another single point).
 (a) Show that $C(X)$ is contractible (thus simply connected).
 (b) Is $\Sigma(X)$ always simply connected? Prove or disprove.

(4) Let X be the complement of two circles $\{x^2 + y^2 = 1; \ z = 1\}$ and $\{x^2 + y^2 = 1; \ z = -1\}$ in \mathbb{R}^3. Show that X is path connected and determine the fundamental group $\pi_1(X)$.

(5) Show that there is no one-to-one continuous map from $\mathbb{R}^n \to \mathbb{R}^2$ for $n > 2$.

(6) Let C be the “boundary circle” of the (compact) Möbius band $\mathbb{M}B$. Attach $\mathbb{M}B$ to the “top” of the cylinder $S^1 \times I$ using any homeomorphism $\mathbb{M}B \supset C \to S^1 \times I$. Then attach the torus $T^2 := S^1 \times S^1$ to the “bottom” of the cylinder using any homeomorphism $T^2 \supset S^1 \times \{(1, 0)\} \to S^1 \times \{0\} \subset S^1 \times I$. Let X be the resulting space. Thus X is obtained by first attaching a Möbius band to the top of a cylinder and then attaching a torus to the bottom of the cylinder. Calculate the fundamental group of X.

(7) For each integer $m > 2$ and each $n \in \mathbb{N}$, construct a compact connected m-manifold whose fundamental group is the free group on n generators. Can you do this if $m = 2$?

(8) (a) Find the universal covering space of the one point union $X := \mathbb{K} \vee S^1$ of the Klein bottle and the cycle.
 (b) Find a covering space $Y \xrightarrow{p} X$ that corresponds to an infinite cyclic subgroup of the fundamental group of X.
 (A description of a covering space includes both a definition of the total space as well as a definition of the covering map, and an indication of why the map is a covering projection.)